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POGO SUPPRESSION ON SPACE SHUTTLE -
EARLY STUDIES

By S. Rubin, R.G. Wagner and J.G. Payne
The Aerospace Corporation

S UMMAR Y

Preliminary studies for pogo prevention on the Shuttle vehicle are report-

ed. Section 1 on "Coupling of Hydroelastic Tank to Fee dline" displays the im-

portance of the effect of oscillatory outflow from a hydroelastic tank in terms of
normalmodes of vibration for a structure containing a closed-bottom tank. The

primary influence of the tank outflow is shown to be a new generalized force on

the structural modes which equals the product of the modal pressure at the tank

bottom and the volumetric outflow. The equations derived should be employed

for future mathematical models.

Section 2 on "Method of Approximate Stability Analysis" describes a gen-

eralization of a previously developedmethod so as to account for such additional

matters as tank outflow, the presence of two separate pumps for a propellant,

and the presence of an accumulator at the inlet of either pump. Propulsion-

feedback frequency response is derived in closed form for a system containing

one engine, one propellant, and one structural mode. Evaluation at undamped

feedline resonances reveals the conditions for which the contribution of tank

outflow is stabilizing or destabilizing. The results are then employed to develop

a criterion for identifying those structural modes which are of potential signifi-

cance for system stability. Use of this method is recommended for preliminary

evaluation of pogo stability, including the evaluation of accumulators.

In Section 3 on "Feedline Modeling" various finite-element and normal-

mode models for uniform hydraulic feedlines are evaluated with the objective of

minimizing the required number of second-order equations. A criterion of ac-

curacy is based on a 5-percent tolerance on frequency and amplitude for the four

admittance functions which relate flow and pressure at the two ends of a long

line. The result is a procedure for optimum modeling a complex feedsystem

using a building-block approach. A criterion is given for selecting either a par-

ticular finite-element approach or open-open modes for each section of the feed-

system.

Section 4 on "Engine Analysis and Testing" makes specific recommenda-

tions for the analytical estimation of pump cavitation compliance and dynamic

gain. It also identifies weakness in thepast practices of pump testing and pro-

poses a three-phase program of turbopump dynamic testing involving: (a) com-

puter simulation studies of test practices, {b) comprehensive dynamic tests of

available subscale pumps using water, and (c) verification tests on full-scale

turbopumps using propellant. The development of a flowmeter for dynamic flow

measurement is recommended.



The last section on "Vehicle Studies" relates the results of numerical
studies on the booster lox system of the preliminary vehicle configuration based
on the approximation method described in section 2_. It is concluded that an

accumulator between the boost and main pump offers promise of higher effective-

ness than one at the engine inlet. It is also concluded that the small distributed

resistance of feedlines can be important for high-frequency peaks in propulsion

frequency response. A first estimate of the cavitation compliance of the Shuttle

pumps is given.



INTRODUC TION

The effort to achieve pogo stability on the Space Shuttle vehicle system is

complicated by the unusual degree of complexity and variability in the system
dynamics. Complexities of the liquid propulsion system are introduced by the
multiple organ-pipe modes of the long oxidizer feedline in the frequency range
of the active structural modes and by the intricate nature of the high-chamber-
pressure engine, particularly the presence of multiple pumps for each propel-
lant. Structural complexity results from the multibody configuration which
gives rise to strong coupling of longitudinal to other motions. Variability is
contributed to the structural dynamics by the wide range of payloads and to the

propulsion dynamics by the thrust-control feature of the engine. Pogo suppres-
sion, therefore, is made more demanding by the fact that stability must be
established over a much wider range of system variables than has heretofore
been required. As a consequence, additional burdens are placed on the mathe-
matical modeling, on the experimental programs, and on the analysis tech-
niques to assure that stability can be achieved. The studies reported deal with
various elements of the task of preventing pogo on the Space Shuttle in conso-
nance with the criteria and recommended practices provided by reference 1.

Studies began with an assessment of the interaction of the booster lox sys-
tem with the structural system. This study paralleled similarly directed stu-
dies of the early configuration by vehicle contractors and by NASA. Of parti-
cular concern to us was the stability at coincidences of higher modes of the oxi-
dizer feedsystem with structural modes. So, while other studies of accumulators
were limited to a location at the engine inlet as used on past vehicles, our stu-

dies dealt with the additional possibility of an accumulator between the boost
and main pumps. The concept of an interpump accumulator is to introduce
damping at feedline resonances by the action of the resistance of the boost pump
upstream of the accumulator. Engine contractors were contacted about the
practical feasibility of an interpump accumulator and the response was favorable.
It was then learned that one engine contractor was considering an accumulator
downstream of the first-stage of the main lox pump to reduce high-frequency
peaks in propulsion frequency response. This location was then added to our
s tudie s.

The approximate method of analysis, previously developed during studies
of Titan pogo stability and later employed for Saturn V S-IC studies, was ex-
tended to deal witl_ the presence of two pumps, multiple accumulator locations,
and distributed feedline resistance. It was felt that the latter might be signifi-

cant for the engine-inlet accumulator, since the small feedline resistance is
the only means for dissipation upstream of the accumulator. The approximate
method was particularly valuable for identifying the most critical stability con-

ditions. In particular, the most critical tuning of the higher feedline modes
with structural modes was readily accomplished.

Results of a numerical study for one of the proposed vehicle feedline con-

figurations showed a superiority for the interpump location. These results are
described in section 5. Subsequent analyses for another feedline configuration

produced a condition of instability that was clearly incorrect in that the system
was behaving in an essentially passive manner (that is, with negligible thrust

3



oscillation). The suspected difficulty was the lack of account for the influence

of oscillatory flow out of the vehicle tank on the forces exerted on the tank walls.

Based on the work of reference 2, such an effect was identified in reference 1

as a lack in the state of the art of structural modeling for pogo. A thorough

analytical study of outflow was conducted and the result was the formal deriva-

tion of the appropriate equations appearing in Appendix A and the interpretive

discussion in section I. Section 2 shows the effect of the outflow on the pro-

pulsion-feedback transfer function, and then the importance of outflow under

certain restricted conditions is evaluated. On the basis of these results, the

criterion given in the Appendix of reference 1 for select[ngthe signif[cantstruc-

tural modes for pogo stability was revised.

Another major study was directed toward an evaluation of approaches to

the mathematical modeling of feedlines. The requirements for such modeling

were more severe for the Shuttle than on past vehicles because of the desire to

maintain accuracy over a number of organ-pipe modes and to account for resis-

tance. A variety of approaches to feedline modeling have been employed over

the years for pogo studies. The need for Shuttle was for a consistent andcom-

prehensive evaluation of promising alternative approaches. Included was the

need for an accuracy criterion that was based on the role of the feedline in the

frequency response of the propulsion system. The study described in section 3
is our contribution in this area.

Still another study was directed toward improving the experimental deter-

mination of the dynamic behavior of turbopumps. As pointed out in reference ],

experience has shown that such tests are difficult to perform and have produced

questionable results. Some of the difficulties with past test practices are [den-

rifled in section 4. A new approach is discussed and our proposed three-step

program for Shuttle pump testing is outlined.

4
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i. COUPLING OF HYDROELASTIC TANK TO FEEDLINE

I. 1 Introduction

In liquid-propellant missile systems the pogo vibrational stability prob-

lem is a result of coupling between the vehicle structural dynamics and the dy-

namics of the propulsion system. In formulating a linear mathematical model

of the phenomenon a modal representation is employed for the structural sys-
tem. The model is generally defined so that the active stage includes only the

propellant in the tanks, with the tanks usually treated as if closed-off at the
tank/feedline interface. The propellant feedsystem is then analytically coupled

to this constrained structural system.

In the usual approach the change in tank pressures resulting from dyna-
mic flow out of the tanks (termed "outflow") is neglected when coupling the

feedline to the tank. The rationale is simply that because of the smallness of
the line area relative to the tank cross-sectional area, this flow should have a

negligible influence on fluid pressures within the tank, and therefore the effect
on the structural system should also be negligible. Reference 2 correctly con-
cluded that this assumption is invalid. It Was shown that the integrated effect

of the small change in the tank-interior pressures can easily produce a gene-
ralized force on the structural modes which is of the same order of significance

as one of the basic propulsion system forces, the engine-inlet force. This

result has been ignored until recently. Unfortunately, although the correct con-
clusions were reached in reference Z, the derivation contained a minor error

and was limited to a very elementary model of the tank. Since the results are

therefore not directly applicable to current structural models which employ

quite detailed descriptions of the propellant/tank systems, a more general

derivation of the outflow equations was necessary.

Reexamination of the outflow problem during this study was motivated by
an anomalous result found in the course of analysis of the early Shuttle confi-

guration during an investigation of various accumulator placements. Applying
the usual approach of neglecting outflow effects, an instability was predicted in
a particular circumstance when it was clear that the system should not have
been unstable. (The system parameters were such that no significant thrust
resulted for frequencies in the vicinity of the predicted "instability, " so the
system was essentially behaving in a passive manner. ) Subsequent analyses
indeed showed that the anomalous behavior was the result of not properly ac-

counting for the outflow effects.

General dynamical equations have therefore been derived, accounting for
the effects of tank outflow when the feedlines are coupled to the tanks. It is
shown that the assumption of negligible influence is in general invalid and that
the resulting forces applied to the structural system are significant when com-
pared with other propulsion-system forces. Consistent with the usual formula-
tion of the pogo model a modal representation of the structure is employed.

9



i. 2 Method of Analysis

A derivation of the equations for coupling the feedline to a tank is pre-
sented in Appendix A. Only the case of a single propellant tank is considered

since incorporation of multiple tanks is an obvious generalization. As shown
schematically in the free-body diagrams of figure 1, the structural/propulsion
system is separated into a structural system with fluid in the tanks (fig. lb),

and a feedline-engine or propulsion system (fig. lC). Outflow from the tanks is
a permissible fluid motion of the structural system. The forces F i (i = 1, 2)
are a symbolic representation of the usual propulsion-system forces, such as
thrust, engine-inlet force, and reaction forces at feedline supports (ref. 1).
These are of no concern for the present analysis and are carried along for the
sake of completeness only. The equations of motion, defining structural-
system response to the indicated "external" forces generated by the propulsion
system, are derived using Hamilton's principle (ref. 3 or 4). The approach
employed is to describe fluid motion within the tank in terms of two velocity

potential functions, one representing motion consistent with the modal analysis
of the structural system, the second representing the additional motion required
to remove any fluid constraints introduced for convenience in the modal analy-
sis. (For example, in the case of a closed-bottom-tank modal analysis, the
second potential function represents a flow across the tank-bottom/feedline
interface). The sum of the two potential functions fully represents fluid mo-
tions of the coupled structural]propulsion system. Equations are derived cor-
responding to different approaches to the structural-mode analyses, based on
assuming different fluid boundary conditions at the tank/feedline interface.
Fluid compressibility, surface waves (sloshing), and ullage-gas dynamic ef-

fects are neglected.

As a matter of definition, use of the phrase "tank bottom" refers to the
tank-bottom/feedline-fluid interface. Because of the smallness of the feedline

area compared to the tank area, the variation of parameters across the feed-
line area is neglected.

1.3 Feedline Within Structural System

The equations in Appendix A were derived for the case in which the feed-
line is represented as an entity separate from the structural system. Another
approach is to make the feedllne an integral part of the structural system. A
suitably accurate definition of the feedline stiffness characteristics requires
accounting for compressibility of theliquid in the line, whereas the Appendix A

analysis assumes an incompressible fluid. However, since the llne is typically
treated as a one-dimenslonal system, the liquid compressibility can be viewed
as additional flexibility in the line structure itself. The analysis of Appendix A
and the results for the three boundary conditions at the tank/feedline interface
considered are therefore applicable for like boundary conditions at the termina-
tion of the portion of feedline contained within the structural system.

10
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I.4 Discussion of Closed-Tank Results

In the most typical formulation of the pogo model the structural system is

defined with closed-bottom tanks. For this case (adding modal damping _n for

completeness), equation (A-20) of Appendix A gives the governing coupling

equations as follows:

• 2
M (qn + 4-¢o qn )n 2_n °Jnqn n

='_ln (tb) QR + Pt A_ _bn(tb ) +_"2_ l:'_i
i

Pt =_k '_Ik (tb) qk - LtQR

(1-i)

The upper equation is the equation of motion for the nth mode of the structure
with closed-bottom tanks. The first of the generalized force terms at the right

represents the work done by the modal tank-bottom pressure _n(tb), acting
through the fluid displacement relative to the tank bottom (expressed by the out-
flow QR). The second generalized force represents the work done by the applied
"external" pressure Pt acting through the modal displacement of the fluid (which
is constrained to be the same as the structural displacement at the tank bottom;
see fig. lb). The third term at the right of the upper equation represents the

work done by the "usual" propulsion-system forces mentioned earlier. The
lower equation simply states that the tank-bottom pressure is the sum of the
pressures in each of the structural modes, augmented by the second term which

is the pressure due to outflow QR from a rigid tank.

For practical reasons structural dynamicists often prefer a formulation of
dynamical problems in symmetrical forms and in terms of absolute rather than
relative coordinates. Introducing the absolute volumetric flow Q,

Q = QR - Ai £(tb) = QR - A1n_ Cn (tb) _In (I-2)

where x(tb) is the structural motion at the tank bottom, yields equation (A-Z1)
which can then be written in a symmetrical form simply by using the second

equation to eliminate Pt in the first. The result for the nth mode (after adding
modal damping) is

• 2 [_n(tb) A _bn(tb)lMn(_ n + 2_ n COnqn 4- COnqn) - _ L t

- A_Z _In (tb) ¢k (tb) 4-'_Ik(tb) _n(tb) -A_L t _bn(tb)¢k(tb)]qk
k

i

(l-3a)
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(1-3b)

The minus sign on Pt is a result of choosing positive Q downward and positive
structural displacements upward; see figure 1. Transforming to the Laplace
variable s, a display of this result in matrix form, using the displacement

variables ql .... qk' "'" -Q/s, is as follows:

2
Dll(S) + (6M11)s ... (6Mlk)S2

2 2
(6Mlk)S ... Dkk(S) + (6Mkk)S ...,dk(S)

!

'Lts2dl(s) dk(S) ,

ql

qk

m-e/s

1
_ F i "= * . Cki

ll Pt

(t-4)

where

s 2 2
Dkk(S) : Mk( + 2_k0JkS + _0k)

6Mnk = 6Mkn = [;_ln(tb) Ck(tb)

dk(S" ) = [,5_lk(tb ) - AlL t Ck(tb)]

+_lk(tb) ¢n(tb) - AiLtqn(tb ) ¢k(tb_

2
S

1.5 Importance of Outflow

This section shows that outflow can provide a significant excitation to the
structural system. This is accomplished using a one degree-of-freedom repre-
sentation of the fluid/tank system in which the entire body of fluid is assumed

to move with displacement xf, and the tank flexibility is represented by a single
spring supporting the fluid mass. With this model we examine the relative
importance of the terms associated with outflow using the form given by equa-
tions (1-3). All but one of the outflow terms is shown to be negligible relative

13



to other terms of comparable form. That term is O_ln(tb)Q in the first line of
equation (1-3), shown to have the same order of significance as does the engine-
inlet (or suction-pressure feedbac k) force.

For the simplified model, fluid displacement can be expressed in terms of
the structural-mode generalized coordinates by

xf = y:_ Cn(f) qn
n

tank-bottom pres sure in the nth mode by

_ln(tb) = Pht_bn{f)

and the contribution of fluid motion to the nth generalized mass by

Mnf = PhtAt¢2(f)

where h t is fluid height in the tank and A t is tank area. If the tank inertance L t
given by

Lt = Pht/A t

is used, and the above relations are substituted into equations (I-3), the change

in the generalized force on the nth mode arising from outflow can be written as

+_ SMrik qk

A1 @n(tb)-

6Fn : _ln(tb) 1 - At %(0 d k (1-5)

whe re 5Mnk has now taken the form:

A_ [@k(tb) ibk(f ) Cn(tb)

6Mnk - At Mnf [ @n(f) + ib2n(f)
(1-5a)

The two terms within the brackets of equations (1-5) and (1-5a), which

contain the ratio of line to tank. area. A1/At, can be neglected relative to other
term(s) within the brackets since tn practtce Af << A t . These two terms result
from those in equation (1-3) which contain the tank intertance L t. The negligi-

bility of L t results from its inverse proportionality to the tank area At; on this

14



basis set L% = 0 in section 3 in order to obtain a simplified approximate fre-
quency response for the propulsion system.

The negligibility of the entire quantity 6Mnk in equation (1-5a) can be de-

monstrated by means of the following argument. The quantity 6M k is of the
order of magnitude of (Al/At)Mnf, where Mnf is the fluid's contrigution to the

total generalized mass M n. Thus, since Mnf < Mn, 5Mnk is at most of the

order of (A I/At)MD.." It can be seen from equation {1-4) that the matrix of the
5Mnk terms is aadltzve to the diagonal matrix formed by the M k terms contained
within the Dkk(S). But, since AI/A t << 1, this addition is a small perturbation
on the matrix of the Dkk, and thus on the structural system's modal frequen-
cies and mode shapes (see section 6.12 of ref. 5). It can therefore be concluded

that the 5Mnk terms are negligible.

In view of the terms hlisposed of in equation (1-5), the expression for the
change in generalized force has been reduced to

6Fn = ;9_in(tb)_ (1-6)

Again, a comparative term is required, which in this case is best provided by

the engine-inlet force contained in the F i force terms of equation (1-3). This
force, PsAl, produces the generalized force, Fns, given by

Fns = PsAi ¢n(ei (1-7)

and the ratio is formed

5F n _in(tb) (h pht Cn(f)

Fns _ PsAi _bn(e) Af _bn(e) Ps

(1-8)

For a resistanceless, compressible line, the transmission-line equation (see

sec. 3) can be used to define the absolute flow Q_in terms of the pressures Pt'
P :

S

_/Phl sinc0w
O = - Ps " Pt cos _w//_ Ps

(1-9)

where T is the acoustic travel time for the line length h i . Therefore

19 - 19 cos t_T
6F ht _bn(f) _ T s t

n _ _ _ _

F h_ _n(e) sin _r 19ns s

(1-10)
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Based on past experience with typical systems it is often true that Ps is
considerably larger than Pt' so that the last of the four factors in equation
(1-I0) can be of order 1. Noting that the first three factors can also be of order
1, it is finally concluded that 5Fn can be of the same order of magnitude as
F s" That is, the effect of outflow can be as significant as the suction-pressure
fndback force and should therefore be properly accounted for in pogo modeling.
Note that this is true even for the case of an incompressible line (T = 0). Am-
plification of this argument is provided in section 2, where it is shown that the
effect of outflow on tank pressures can be viewed as a modification of the suc-
tion-pressure feedback force and that this modification can be large.

I.6 Conclusions

I.

Z.

Q

.

.

Appropriate account for the tank outflow can be derived by using

Hamilton's principle and the superposition of two velocity potential
functions for the incompressible fluid. One function describes the
fluid motion consistent with the constraint boundary condition at
the tank outlet assumed for the determination of structural modes.

The second function represents the additional fluid motion required
to remove the constraint imposed on the fluid.

The resulting equation for each mode of a closed-tank structural
system, equation (1-1), shows two additional generalized force
terms due to the outflow. The first term represents the work done
by the modal tank-bottom pressure acting through the fluid relative
displacement out of the tank. The second term represents the work
done by the total tank-bottom pressure acting on the modal displace-
ment of the tank-bottom structure. Equation (1-1} also states that
the total tank-bottom pressure is the sum of the modal pressures
plus a pressure arising from the outflow from a rigid tank. These
results can be put into the symmetrical form of equation (1-3), if
desired.

An assessment of the importance of the various terms has been
made using a simplified model of the fluid/tank system. The pri-

mary influence of the tank outflow is embodied in the first of the
generalized force terms identified in (2) above. This term was
compared to the generalized force due to suction-pressure feedback

and it is concluded that they can be of comparable magnitude.

In view of (3), dynamic flow out of a tank during oscillation of the
coupled structural/propulsion system produces an excitation of
modes of the closed-tank structural system which cannot in general

be ignored.

The results are equally applicable to the case when the tank extends
into a feedline and the closed-type of boundary condition for deter-
ruination of structural modes is applied at the bottom of the feed-
line. This is based on the fact that compressibility of the fluid in

the line can be accounted for by additional structural flexibility in
the wall of the feedline.
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. Other boundary constraints on the fluid at the tank outlet in the
structural system can also be treated. Such results are given in

Appendix A.

1. 7 Re commendations

For Shuttle pogo modeling, coupling equations (1-1) or (1-3) should be
employed to account for tank outflow when closed tanks or closed feedlines are
assumed for the determination of structural modes. If fixed or free boundary
conditions on the fluid are desired for the structural analysis, the appropriate
equations are (A-18)and (A-24), respectively.
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Z. METHOD OF APPROXIMATE STABILITY ANALYSIS

Z. 1 Introduction

The mathematical model for pogo stability analysis of a vehicle involves
so many interactions of the coupled system that the analyst has difficulty in
achieving a thorough understanding. This is especially true for the complex
Shuttle vehicle. It is therefore useful to have an approximate method to serve
as a tool to gain insight into the importance of the system parameters and also
to conduct preliminary qualitative analyses. Such an approach was developed
in reference 6 by first simplifying the system to one involving one engine, one
propellant, and one structural mode. Next an expression was derived in closed
form for the net propulsion-system frequency response, H(_0), which expresses
the generalized force per unit reference acceleration. As a final step, an
approximation for the structural damping required for neutral stability (_N)
was obtained, namely*

Gp
_N - Z (2-I)

where H I is the imaginary part of the propulsion-system frequency response
evaluated at the natural frequency of the structural mode, and Gp is the struc-
tural gain (square of the modal displacement divided by generalized mass) for
the reference position on the vehicle.

For purposes of analysis of the Shuttle vehicle, the system used in refer-
ence 6 is generalized somewhat by incorporating the following additions:

1. Structural-mode excitation from tank outflow

2. The presence of two pumps within the engine (representing the
boost pump and the first stage of the main pump)

3. The presence of an accumulator at the inlet of either pump

4. Distributed resistance of the tank-to-engine feedline

5. More refined treatment of combustion dynamics

A revision of the criterion for assessing the significance of structural modes
given in the Appendix of reference 1 will then be derived.

In section 5 of the report, the approximate method is employed for sta-
bility evaluations of the early Shuttle configuration.

Equation (Z- 1 ) is based on eq.
has a minus sign missing).

(36) to (39) of ref. 6 (note that eq. (39) of ref. 6
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2.2 System Model and Governing Equations

A schematic representation of the system to be analyzed is shown in

figure 2. This simplified system is believed to display the major character-

istics of an actual vehicle system. Discussion of the linearized mathematical
model for the various elements follows. The state variables for the fluid are

pressure P and volumetric flow Q; thus impedance quantities have the same

units as does the ratio P/Q (as opposed to ref. 6 where the flow quantity is

we ight flow).

Z. Z. 1 Feedline. - Assume that the steady velocity in the feedline is low

compared to the acoustic speed, so that Mach-number effects are negligible.

The line can then be treated as a simple uniform transmission line. Its pro-

perties are fluid mass density p, length _, flow area A_, total inertance

L f = p.f/Af, total resistance R_ due to wall friction, and acoustic travel time

T= _/a. The acoustic speed "a" accounts for wall radial flexibility as well as
fluid compressibility. The wall moves with velocity x_ in the direction oppos-

ing the flow. The complex propagation angle {9 satisfies the relationship:

82 2 2
= s T (I +R_/s L_) (Z-Z)

where s is the Laplace variable. The transmission equations can be written in
the form:

Pl = allPt + alzQt + al3x_ (Z-3a)

Q1 = azlPt + a22Qt + az3X_ (2-3b)

whe re

all = az2 = cosh 0

s inh 8 1

a12 = - Z_ 8 ' a21 = " _ @sinh8

sinh 8 A_ R

a13 = - A_R_ {9 ' a23 - Z_ (I - cosh 8)

Z_ = Rf +sLf

2.2.2 Pttrnp-inlet admittance. - A pump-inlet admittance Y(s) is used to
describe the combined effect of an accumulator and pump-inlet cavitation. If an

accumulator is represented by compliance C a, inertance La, and resistance R a,

and the cavitation bubble compliance is Cb, then
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TANK

FEEDLINE

(@, A£, Z£ = R_+ sLy)

i

N _Z (pipe wall velocity)

DEVTCE B k : _ _

(Z c) DISCHARGE {YA )

I ._ c --P_,Q_ i , x (engine velocity)

\--! , r- 7_"J._J °
/ \ SECOND FIRST

/ \ _MP P_MP

_ (ZPz' m2+ I) (Zpl,ml+l)

Figure 2. Propulsion system for approximate
transfer function.
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)1Y(s) = sC b + sL +Ra a
(2-4)

If the accumulator is a purely compliant device, it is simply

Y(s) = S(Ca + Cb) (2-4a)

2.2.3 Engine elements. - The engine elements are modeled in the same
fashion as was done in reference 6. Each pump (minus cavitation) is modeled
by

Pd = (m + 1)Ps - ZpQh

-- O's (z-s)

where Ps and Pd are suction, and discharge, pressures, O's and O_ are suction
and discharge volumetric flows relattve to the pump, m + 1 is the pump dyna-

mic gain, and Zp is the flow impedance of the pump.

If incompressible flow is assumed, the combination of the main pump,
discharge line, injector, and combustion chamber satisfy the two relations

Pc/P 2 : (m 2 + I) Z /Z' P /Q2 = Z (2-6)C • C C

The combustion impedance Z is given by
c

PC _:' e -TdS
z - (z-7)

c A T I+TS r

C _where is an effective characteristic velocity for perturbations in propellant
flow {account is taken of the slope of the curve of C" versus mixture ratio; see

ref. 6), T d iS the time delay accounting for the average time the individual pro-

pellant spends in the chamber prior to vaporization, and r r is the gas residence
time accounting for the mixing and reaction time common to both propellants
(ref. 7). (When the effect of two propellants is considered, C _ and Tcl for one
propellant will have different values, in general, than those for the other pro-
pellant. ) The total impedance downstream of the boost pump is Z' (sum of the
flow impedance and the combustion impedance):

Z' = Zp2 + Z d + Zc (2-8)
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where Z d is the impedance of the discharge line and injector.

2.2.4 Structural mode. - The structural modes are derived for close-

bottom tanks as given in the previous section. For a single mode, the engine

acceleration Xe can be written (as in eq. 2 of ref. 6) in terms of an effective
thrust T':

sZG
e

___ - T |
_e 2 2

s + 2_0 s +_
n n

(Z-9)

where Cn(e)T' is the total generalized force acting on the mode, G e =¢2n(e)/M is

the structural gain for engine motion, _n is the natural frequency, _ is the frac-

tion-of-critical damping, M is the generalized mass, and Cn(e) is the modal

displacement of the engine. If the fluid frictional forces acting on the feedline

pipe are neglected, then from equations (I-I) and (I-2) can be obtained:

_n I_) @n(tb) eJT'= ATCfP c - Agl° 1 + @-_) t + A1 @--_) x + Al*n(tb)Pt
(2-1o)

where Qt is the absolute flow out of the tank, _n is the modal tank-bottom pres-
sure (pressure per unit acceleration of the generalized coordinate) andCn(tb) is

the modal displacement of the tank-bottom structure. Also, the tank-bottom

pressure with outflow is

Pt _ - L + A_ ¢n(tb) _ (2-11)
- _bn (e) e t t Cn(e )

where L t is the inertance of the propellant in the tank. On the basis of the dis-
cussion of equation (1-5) in section 1.5; the second term at the right of equa-

tion (2-10) can be neglected because of the presence of the relatively small tank

inertance L t. Thus, to a first approximation, tank outflow does not affect tank-
bottom pressure, and it follows that it does not affect any pressure or flow in

the propulsion system. Therefore the only effect of the tank outflow is on the

effective thrust, which can now be written as

_n _n _bn(tb)

T'--" A t CfP c - A_l°l-+ @n(e ) Qt + 2 ¢--_) AI _bn(e) Xe (2-12)

Z. 3 Transfer Function for Propulsion Feedback

Now consider the effective thrust per unit engine acceleration to repre-

sent the feedback transfer function for the propulsion system. Assembling the

results of section 2.2 and omitting all the algebra results in the following form:

73



r P

H(s) - ..
X e

+ i) '/s) j (i - D J)
(m i + i) (m (A_Z_ pT °

(Z+ Z'Z YB) 0pl (ta-_-h-e + YAZI) + (ml + i)(m 2 + i + ZYA) Z t

whe r e

zl

s @n (tb) _n [ Rt _n (1) ]
/._n _2 0 +At [2
_@-_] Z 1 tanh--------O qn(e) qn(e) Z_ _n(t-k_)J

Rf Cn(l ) ]
= Zf 1 - Zf Cn(e)

(2-13)

(a modification of the feedline series im-

pedance due to the action of pipe motion on
the liquid)

To = AtCfZc/p

0
J = l+b

n sinh O

b
n

s

Cn(e)

D
Af(Z + Z'ZplYB)

(m I +i )(m 2 +I )ATCfZ c

(thrust per unit mass flow into the chamber)

(a factor which accounts for the relative

influence of tank-bottom pre s sure )

(modal tank-bottom pressure divided by

the engine-inlet pressure for an incom-

pressible liquid in the feedltne moving with
the engine )

(ratio of engine-inlet force PIAI to thrust;
I/D is sometimes called "engine gain;"

note that in ref. 6 D is the real part of

this ratio of forces)

Z = Z'+ +I
e (m2 )Zp1 (total series impedance of the engine;

Z i for first pump and Z' for the remain-
d_Prj including the combustion impedance)

With the exception of the structural excitation due to tank outflow, equa-

tion (2-13) is identical to the results of equations (15-19) of reference 6 under

the following lirniting conditions (stated in the notation of ref. 6):

a. The feedline is resistanceless (Rf---0, Z} and Zf---sL1, O-_ iph)

Do All the propellant in the tank is assumed to move with a modal dis-

place ment ¢ n (t) and '_n --" Phi Cn (t)

c. There is no device or cavitation internal to the engine (YB--_ 0)

do

e.

There is no second pump (Zp2-_0, m 2 ÷ I-_I)

Z
There is a pure compliance at the engine inlet (YA = S/LlC°b, where

_ CAL f : I)
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fl The chamber dynamics are described by an equivalent time lag

(Td--_O, T r --_ TC).

In equation (2-13) the effect of structural excitation due to tank dynamic

outflow manifests itself by the presence of the second and third terms and,

most importantly, by the presence of J in the I-DJ factor in the numerator of

the first term. Without the outflow effect, the factor would be I-D, where D

accounts for the "suction-pressure feedback" (that is, the subtractive effect

from the thrust of the pressure-times-area force at the engine inlet). There-

fore the major effect of the outflow can be viewed as a modification of the suc-

tion-pressure-feedback force, with IJ ] > 1 increasing the magnitude of the

feedback force andwith IJI < 1 decreasing the magnitude of the feedback force.

A more detailed evaluation of the effect of outflow is discussed next.

2.4 Effect of Outflow Without Feedline Resistance

An evaluation of the effect of tank dynamic outflow on the propulsion-

feedback transfer function will now be made with the following simplifying con-

ditions :

i. No feedline resistance (R_-_ 0, Z_ and Z_-- sLi, 0 ---ST, J real)

2. No admittance internal to the engine (YB = 0)

2

3. Pure compliance at inlet of first pump (YA = SCA' _b = I/L_ CA)

4. Negligible delay and residence times in chamber (T O real)

As a consequence of the introduction of the above simplifications into equation

(2-13), the imaginary part of the feedback frequency response becomes

Hi(i0J) = Imag.

(m! + i) (m Z + i)A_L_PToJ(i - DK) (2-14)

+iCm I + 1)(m z+ 2)L+ 
tan OJT _°b

where K = 3 when outflow excitation of the structure is included and K = 1 when

outflow excitation is neglected. Note that the second and third terms at the

right of equation (2-13) contribute nothing since, for the assumptions made,

they are real.

2.4. 1 At feedline resonances.
which is a solution of

_0 T _0

05--_= 0
tan _ w

b

- At a feedline resonance frequency 0_*

(Z-15)
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we find by using equation (2-14) that

pAi T
HI(i_*) = co o j (1 - DRK) (Z-16)

where D R is the real part of D, the ratio of engine-inlet force to thrust; both

1/D and'_/D R are sometimes called the "engine gain. " Thus, by virtue of
equation (2-I), the structural damping required for neutral stability is propor=

tional to J(1 - DRK) at a resonance of a resistanceless feedl[ne. Plots of
J(1 - DRK) versus J for various values of D R are shown in figure 3. if it is
recalled that K = J when outflow excitation is present (laeav 7 curves) and K = l

when outflow excitation is absent (light llnes), it can be observed that instability

is promoted by the outflow effect in the regions for which 0 < J < I, since for

each D R in this region a higher ordinate occurs when the outflow _ffect is pre-

sent (except for the trivial case D R = 0 when outflow has no influence). For
J > 1, outflow lessens the possibility of an instability; for J < 0, the propulsion

feedback is stabilizing without the outflow effect and even more stabilizing with
the outflow effect.

As seen in figure 3, a higher D R (lower "engine gain") tends to be helpful
for achieving stability. Estimates during studies of the early Shuttle configura-

tion yielded values of D R between 0.3 and Z. 8 (corresponding to "engine gains"

between 3 and 0.4) depending on the values assumed for pump dynamic gain

(pump gain is discussed in section 4.2). A desire has been expressed by some

that the engine be designed £o insure that the "gain" does not exceed unity (i.e.,

D R > i). In the absence of outflow excitation, a unity gain (D R = L) does pro-

duce zero feedback as shown in figure 3; however, OLIL_OW excitation will [_ro=

duce u positive feedback for 0 < ff< I. Thus, even if the engine design had such

a low "gain, " there is no guarantee that instability will not occur in view of

excitation of the structure by the Lank outflow.

Further discussion of the significance of the results on figure 3 requires

some discussion of the meaning of the parameter J, defined after equation

(2-13). Suppose that the fluid at the engine-inlet moves with the engine (that is,

Q1 = " A_xe)" If 0% is then eliminated from equations (2-3a, b), the following

expression for pressure at the bottom of the feedline can be obtained.

, tanh 0_ (t + 1 0 Pt,)Pl = AIZI 0 e A_Z l sinh 0 :_e (2-17)

If it is recognized that the tank=bottom pressure Pt and the engine velocity Xe

are related via the structural mode-shape parameters [that is, Pt/_e =

)q_=_'n s/_bn(e)], then it can be seen that the parenthetical expression,._nqn/_bn !e
in equatmn _r.-17) is exactly the parameter J. The expression ahead of the

parenthe se s in e quation (2- 17) give s the fee dline -bottom pre s sure when the fluid

at the feedline bottom moves with the engine, in the absence of pressure at the

top. Then J is a multiplicative factor which accounts for the contribution to the

feedline=bottom pressure due to the presence of a pressure at the top. So i£

J > 1, tank pressure Pt serves to increase the engine-inlet pressure Pl; if
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0 < J< I, Pt reduces P1 but does not change its sign; if J < 0, Pt reverses the
phase of PI" Further, when J = 1 (Ps due only to Xe)°r J = 0 (Pt and Xe nullify
each other to produce Ps = 0) we see from figure 3 that outflow has no effect;
these are physically reasonable results.

We return now to figure 3 and our observation that outflow promotes insta-

bility at undamped feedline resonances only for 0 < J < 1. Physically, then,
outflow enhances instability at such resonances only when tank pressure is
serving to detract partially from engine-inlet pressure. When outflow serves
to magnify engine-inlet pressure (J > 1), the outflow is stabilizing and can, in
fact, cause a reversal from destabilization due to propulsion feedback (positive
ordinate) to stabilization due to the feedback (negative ordinate). This latter

situation is typical of the critical conditions for stability identified during the
early studies as discussed in section 5.2.2. Thus, unless the nature of the
effect of outflow excitation is altered by the presence of the feedline resistance,
outflow will be stabilizing at those conditions where the most severe tendency
toward instability would exist in the absence of outflow excitation.

2.4.2 At arbitrary frequency. - Let q be the ratio of the value of H I with
outflow excitation to the value of H I without outflow excitation. Manipulation of

equation (2-14) produces the expression

B - DJ (2-18)
q= B-D

whe re

B=I+

L cot _

e tan COT COb

(m 1 + 1) (m 2 + 1) L l

and the total engine impedance is given by

Z = R + i¢oL
e e e

Note that at a feedline resonance, or if the total engine impedance is real (i.e.,

L e = 0), B---1 and D--*DR, therefore q --*(1 - DRJ)/(1 - DR) and the effect of
outflow is the same as that discussed in the previous section.

Equation (2-18) can be quite helpful in estimating the effect of outflow. As
a trial of its accuracy, a complete stability analysis was performed for a Titan
Centaur vehicle at a time of minimum stability, both with and without outflow.
The results showed that the outflow produced an q value of 0.7 (outflow stabiliz-
ing by 3 dB). The use of equation (2-18) for the dominant propellant and the
dominant structural mode gave very close to the same result. In this case the
assumptions leading to the derivation of equation (2-18) were well satisfied.
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2.5 Criterion for Significance of Structural Modes

The Appendix of reference 1 provides a criterion for identifying those

structural modes which are of potential significance for pogo stability. It is

assumed that a coincidence of any structural mode with a feedline mode is pos-

sible. Two additional assumptions made for that analysis were: (I) no suction-

pressure feedback (D = 0) and (2) the gross motion of the propellant in the tank

equals that of the engine (Pt = Phtxe)" Thus, the results fall within the frame-

work of section 2.4. I, where K = 1 and J = 1 +ht/h _. In this case, the factor

J(I-D R) appearing in equation (2-16) is 1 +ht/h _.

A revised criterion based on the presence of outflow excitation is now

sought. If the actual value of D R is used, it is assumed that the value of J can

have the worst possible value for stability. This means that J(l - DRJ ) is

assumed to be the value at the maximum of the curve for the particular value

of D R (see fig. 3); this maximum value is I/4D R and occurs when J = I/2D R.
If equation (2-16) is used it is found that

pA/T + i) + i) (PTo)2
Hl(i0S_ ) = o _ (ml (m2 (2-19)

4_ _D R 4°J_Re

Basedonequation (2-I), a criterion for structural-mode selection can be writ-
ten as

E G DR _N R _N/.__.2_ > 16= 16Tr e

f - 3 PToA i - 3 (PTo)2n (m i + i) (m 2 + i)

(z-z0)

where the summation denotes the sum of the structural gains over the j engines,

and the structural natural frequency _0n = 2wf n equals the feedline resonant fre-

quency _0_:_. The factor of 3 in the denominator provides that the mode will only

be significant if its damping is greater than I/3 that required for neutral sta-

bility, in the case that all the worst-case assumptions are valid. The informa-

tion needed to employ equation (2-20) to select the significant structural modes

is (I)the desired value of structural damping required for neutral stability

(_N) for each mode, (2) the engine gain (1/DR) , and (3) the thrust per unit pro-

pellant velocity into the engine (PToAI).

Figure 4 shows a comparison between the numerator factor J(l - DRK )

appearing in equation (2-16) as employed in reference i, namely 1 +ht/hl,and

the one employed for equation (2-19), namely I/4D R. If as anticipated for the

Shuttle DR< i/4 (I + ht/h i ), the current criterion may reject some modes

which would be accepted as significant by the criterion in reference I.
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$(I-DRK)

2.0

1.5

0.5

1 + ht/h £ used in ref. 1

i-rnplies a horizontal line

above 1

l I I
0.5 1.0 1.5

D R

Figure 4. Factor used for assessing significance of
structural modes.
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2.6 Conclusions

I.

2.

3.

.

o

The method of approximate stability analysis developed in refer-

ence 6 can be extended without undue complexity to account for (a)

excitation of the structural mode by dynamic outflow from a ve-

hicle tank, (b) the presence of two pumps with an accumulator at

the inlet of each, (c) distributed resistance in the tank-to-engine

feedline.

The major effect of the outflow excitation is to modify the suction-

pressure feedback force by a multiplicative factor J. This factor

accounts for the contribution of tank pressure to engine-inlet pres-

sure.

When the feedline is resistanceless and a lumped compliance is

present only at the engine-inlet, stability at feedline resonances is

simply proportional to J(l - DRJ) where D R is the real part of the

ratio of engine-inlet force and thrust (the reciprocal of D R is some-

times called "engine gain"). Outflow is destabilizing only for

0 < J < I, that is when tank pressure reduces the magnitude of

engine-inlet pressure without reversing its phase. When tank pres-

sure increases engine-inlet pressure (J > I) as was typical of the

worst stability cases in studies of the early Shuttle configuration

(section 5.2.2), the outflow effect is increasingly stabilizing as J

increases. A lowering of engine gain is stabilizing, but cannot

guarantee stability.

The effect of outflow at any frequency can be determined by use of

the simple expression in equation (2-18) when resistance of the

feedline is neglected and lumped compliance is present only at the

engine inlet.

Equation (2-20) provides a useful criterion for identifying those

structural modes which are of potential significance for system sta-

bility. This criterion may reject modes for the Shuttle vehicle

which would have been accepted by the criterion in reference i,

which was developed without an account for tank outflow.

2.7 Recommendations

lo

.

The method of approximate stability analysis given here should be

employed for initial analytical studies of stability on the Shuttle.

When more refined analytical studies are warranted, the approxi-

mate method should still be employed as an aid for guiding the

studies and for interpreting results.
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. The criterion given by equation (Z-Z0) should be employed to iden-

tify those structural modes worthy of inclusion in a comprehensive
mathematical model of stability for the Shuttle vehicle.

. A simplification of the imaginary part of the propulsion frequency

response in equation (2-14) should be sought which is valid under
less restrictive conditions than are equations (2-16) and (2-18);

for example, when distributed feedline resistance is included.
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3. FEEDLINE MODELING

3. 1 Introduction

In developing a mathematical model for pogo stability, one of the most

important aspects is the representation of the distributed properties of the

vehicle feedlines. In general the feedline model must provide an accurate rep-

resentation of all possible interrelationships between pressure and flow at the

vehicle-tank and engine-inlet ends of the fee_iline. When outflow was neglected,

flow at the tank end of the feedline did not couple the propulsion and structural

systems. Thus the requirements for feedline modeling are now more stringent

because of the account for outflow. The accuracy of the modeling must extend

from zero frequency up to some upperbound frequency established by consider-

ations of the stability of the overall coupled system. The number of equations

required to accurately model the feedlines can represent a significant portion

of the total number required for the mathematical model. For the Shuffle

vehicle, rough estimates indicate that the number of equations may be of the

order of 200. Thus, considerations of computer storage capability and compu-

tational time requirements indicate that attention be paid to the efficiency of the

feedline modeling.

Most computer programs cannot handle an exact representation because of
the involvement of transcendental functions [see eq. (2-3)]; thus, practically,

one must resort to an approximation. The most widely employed technique for

approximation is the finite-element approach wherein a line is subdivided into

segments. Bases for the finite elements used in pogo models have been lumped

parameters (e.g., refs. 8 and 9), power-series expansion (e.g., ref. i0), and

product-series expansion (e.g., ref. II). An approach using normal modes also

has been employed (e. g., ref. 12). Another approach is the use of product-

series expansions of the transfer functions for the overall line (refs. I0 and 13).

A pos sibility which has not to our knowledge been employed for pogo models is

an energy-minimization procedure to represent the line by a number of discrete

displacement coordinates.

Our investigation concentrates on finite elements for uniform lines because

they possess so much generality. Such finite elements can be employed directly

for a piecewise uniform modeling of feedlines within the mathematical model of

the overall coupled system, or they can be employed to develop a model of the
feedlines alone as a basis for the determination of normal modes. A short-

coming of the normal-mode approach for an overall feedline network is its basic

inability to handle an arbitrary distribution of damping (ref. 14), although nor-

mal modes can still be used for individual portions of line which are completely

uniform. The product-series expansion has generally been considered only for

uniform lines, being based on the well known open-open and open-closed natural

frequencies; an application to nonuniform lines would require that the associated

natural frequencies be obtained first. In summary, the finite-element method

is fundamental to all approaches except (I) an energy-minimization method, or

(2) a normal-mode or product-series method for uniform sections of line. An

investigation of the normal-mode and collocation approaches is discussed in a

later portion of this section of the report.
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Finite-element approximations can have physical or mathematical bases
(ref. 15). Physical models involve the use of lumped parameters (that is,
masses, springs, and dashpots), while mathematical models can be based on
various low-frequency approximations for the mathematically exact behavior.
For purposes of an initial study, three limitations on the models were imposed

in order to keep the number of possibilities reasonably finite: (I) the equations

are expressible in second-order polynomial form, (2) dissipation is not con-

sidered, and (3) the model must be well behaved in the limiting case of an in-

compressible line. The first limitation is based on the fact that most of the

•other portions of the overall structure/propulsion system are naturally of sec-

ond-order form, and it is expected that computational inefficiency would result

if only a minor number of elements of the overall system have a higher order

form. The limitation to the dissipationless line is based on the belief that the

consideration of the small distributed dissipation, which is characteristic of

feedl_nes, would not be likely to alter the relative merits of various models.

The final limitation is quite an arbitrary one since the use of a special model

for an incompressible line would really pose no difficulty. What this limitation

actually does is to remove the possibility of an impedance form for the finite-

element model since the coefficients in this form become infinite for an incom-

pressibleline. Transmission and admittance forms for the equations are not

ruled out. Impedance and admittande forms are essentially duals of one another,

and so no significant loss is expected from the lack of consideration of the im-

pedance form. The three basic matrix forms (admittance, impedance, trans-

mission) and their interrelationships are discussed in reference 16.

3. Z Finite-Element Transmission Models

Various transmission models whose accuracy is to be studied are pre-

sented in this section. The exact transmission-matrix description of the one-

dimensional dissipat[onless feedline shown in figure 5 can be written as

COTsin COt
s

cos COT J Qt

(3-1)

where L = l/Ag is the line inertance, T = x/_ is the travel time, and C is the

line compliance.

3.2.1 Lumped-parameter model. - Three lumped-parameter represen-
tations are in common use: spring-mass, mass-spring-mass (or Rayleigh), and

spring-mass-spring (or Duncan). Reference 15 shows the latter two to be equi-
valent in terms of modal frequency errors, both being superior to the simple

spring-mass model. Hence the Rayleigh model was chosen for investigation.
The transmission matrix for a symmetrical mass-spring-mass system, as

shown in figure 6, is
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Figure 5. Feedline schematic.

M/Z _ M/Z
K -F 2

Figure 6. Lumped-parameter model.
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( 2
;_ 2 ( MJ/

Converting this result to a hydraulic system [(F, _)-+(P,

(L, T2/L)] yields

I
Q); and (M,

(3-2)

t/K)--+-

(3-3)

This result is in a form directly comparable to the exact solution in equation

(3-1).

3.2.2 Maclaurin-series model. - Expanding equation (3-1) in a Maclaurin

series and retaining no powers of ¢o higher than two yields our first mathema-

tical approximation:

(3-4)

3.2.3 Product-serles model. - Expanding equation (3-1) in a one-term

product series yields

(3-5)

This is a form equivalent to the one suggested in section 2.3.2 of reference 11.
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3.2.4 Series=exact-at-specified-frequency model. = A second-order
Maclaurin series expansion has the form:

f(x) = f(0) + f'(0)x + v,m__,_, x z
2

2
Consider altering this series by adding an cx

at x = x_, thus

term such that the series is exact

2 f" (0) x__xi = f(xi) - f(O) - f'(O)xi - --2--

and

f(x) = f(o) + f'(o) x
f(x_) - f(O) - f'(O)xi 2

+ 2 x
x_

(3-6)

Using equation (3-6) to force an exact result at a frequency co yields
0

whe re

(3 -7)

a _
'f-cos(JOT 1 _ s.inco 1

o and b = o

(_o "r)2 (coo"r)2 coo'r

3.2. 5 Minimum-frequency-error models. - Two models were derived to
minimize errors in the modal frequencies. The derivation of the two models is

presented in Appendix B and follows the work of reference 15. Appendix B
shows that the transmission matrix

-,[oq = (3-8)

_ (coT)2 1 - 2
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will have a modal-frequency error proportional to I/N 4 where N is the number

of segments, and the matrix

1 - 0.4746(_OT) 21
-L(_r)z

-L(I- 0.2312(_T)2)]

i - 0.4726(coT) 2 J

(3-9)

will have a modal-frequency error proportional to I/N 6.

3.3 Finite-Element Admittance Models

The exact equations for the line shown in figure 5 can be cast into the fol-

lowing admittance form:

T/tancoT -coT/sin coT Pt Yl i Y12 Pt

-'LL-coT/sin cot coT/tan P YZ2J P

l =

d S coT 2i

(3-10)

It is possible to approximate this expression in the same mathematical ways

used to approximate the transmission matrix.

3.3.1 Maclaurin-series model. - A Maclaurin-series expansion of equa-

tion (3-10), retaining powers of _ no higher than the second, is

[Y] l - 3 - 6

= _[-i- !_ i (co,)2-3 J
(3-Ii)

3.3.2 Product-series model. - Aone-term product-series expansion of
equation (3-10) is

[Y] =

I (coT)Zj I 4(_TTr

(3-iz)
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3.3.3 Series-exact-at-specified-frequency model. - Following the pro-
cedures of section 3.2.4, one can force second-order series expansions of

cot cot and csc _r to be exact at a frequency _o' yielding

[Y] i
i - c(_l')2 -i - d(_T)2"

i
Y_

i - d(_T) 2 i - c(_T) 2

(3-13)

wher e

i- (_OoX)Cot _0oX (_OoX)CSC .o _ - i
c = and d =

3.3.4 Minimum-frequency-error model. - Starting from the form of the

admittance matrix in equation (3-13), it is possible to determine coefficients c
and d such that the error in modal frequencies is proportional to I/N 4. An ini-

tial step is to transform equation (3-13) into the rearward-transmission-matrix
for mulat ion:

i + d(_T)

(3-14)

Following the procedures discussed in Appendix B, we obtain c = 5/12 and
d = 1/12 to product a natural-frequency error proportional to 1/N 4. Thus the
desired matrix is

1

[Y] = LL 2 (3-15)-i _.(__T__ i -

It is not possible, starting from equation (3-13), to find c and d such that the
natural-frequency error is proportional to I/N 0 , as was possible for the trans-
mis sion-matrix form.
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3.4 Normal-Mode and Collocation Models

Flexibility and ease of application make finite-element approaches quite
attractive. Analysis of large systems, however, often requires the use of more

efficient techniques in order to minimize the number of equations required to
accurately represent the system. Limited examination of two particularly ef-
fective methods for doing this have been included in this study, namely, the use
of normal-mode representations and the application of a collocation method.

The normal-mode approach is well known and represents a powerful tool
in performing dynamic analyses of large and complex systems. However, the

most efficient use of this approach is not obvious when applied to components of
a large system; this is clear from the many papers appearing in the literature
on component-mode-synthesis techniques. The present study was limited to use
of the open-open and open-closed modes of a uniform line.

The collocation approach, in which a discrete set of physical variables is
retained, as opposed to the generalized variables of the modal approach, is
much less widely used. Yet in its most refined form it is approximately as
powerful a method for reducing problem size as the normal-mode approach (ref.
17). The collocation method presented here is essentially a Rayleigh-Ritz ap-
proach using a set of polynomials as interpolation functions for system displace-
ment variables. An advantage of the approach over a modal approach is that
physical variables are retained, thus allowing greater flexibility. (Parametric
studies, for example, could be more readily performed).

The equations of motion are developed by employing a standard formula-
tion (ref. 18). For the case ofa resistanceless, one-dimensional line element,
the system dynamics can be described in terms of a displacement variable u(x,t)
as indicated in figure 7.

x

Figure 7. One-dimensional line segment.
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For a line of length ;, area A, inertance L, and acoustic velocity a, the system

Lagrangian (_ can be written as

- \ax!]
"O

(3-16)

Assuming the existence of generalized coordinates qn

tions f(x), such that

u (x, t ) = _fn (X)qn (t)
n

and associated shape func-

(3-17)

the Lagrangian becomes

2 bkn_Ik_In - Cknqkqn (3-18a)

where

/obnk = _- fn(X)fk(X)dx (3-18b)

'fo'Cnk = _-_ fx_(X)fl_(X)dx
(3-18c)

where ft(x) is the derivative with respect to x of fn(X) and where the travel time
T = f/a_as been introduced. Application of Lagrange's equations yields the

equations of motion in the form

_-_ bnkq k +

k k
Cnkqk = [-Pafn(L) + Pbfn(0)] / LA

n=l, 2, ...

(3-19)
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The corresponding flow at any point along the line, Q(x), is given by

Q(x) = -_ Afn(X)qn(t)

n

(3-z0)

The equations for the modal approach can now be written down directly.

In the case of open-open modes,

u(x, t) --E
n,

nT[x

cos -7- qn (t)
(3-Zla)

where

qn

(Pb - Pa)/LA (n = 0)

(3-Zlb)

ao

Q (x,t) ---
n=O

nTrx 4n(t )A cos -7--
(3-Zlc)

in the case of open-closed modes,

CO

u(x,t) = qo(t) +E sin (Zn-l)nxZl qn (t)

n=l (3 -ZZa)

Noting that_o(t) = _(0, t) = -Qb(t)/A, equations (3-19, Z0) become

co 2 -Pb + Pa

Qb/A -E _(Zn - I) qn - LA
n=1

Z 4 Qb +Z(- i)nPa

qn + °_nqn _(2n - I) A - LA

I (3-ZZb)
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wher e

2

n

and finally,

Q(x,t) = Ob(t) - A sin (2n 2 I)T_X _in(t) (3-22c)

As noted previously, collocation procedures (which characteristically re-

tain the physical variables) can be refined to produce results nearly comparable
to those of a modal approach (ref. 17). To assess the potential advantages of
such a method, one of the simplest forms was investigated in which u(x,t) is

defined in terms of the deflections Un(t) = U(Xn, t) at a discrete set of points x n
along the line, and in terms of polynomial interpolation functions. Since the
equations of motion are derived via the Lagrangian, the method is equivalent to
a Rayleigh-Ritz energy approach. The deflection u(x,t) can be expressed as a

linear combination of a set of N linearly independent functions gn(X) as

N

u(x,t) = _ gn(x)Cn(t) (3-23)

n=l

where the Cn(t) are a corresponding set of coefficients. The Cn(t ) are defined
so that the deflections u(x n t) at a set of N points are exact. Then, u(x,t) can
be written in matrix format as

l/u  lNA] Z,n,X,Un,t,
where elements of the matrix [A] are given by

(3-24)

tknk = gk(Xn) k,n = 1,2,...N
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and where the Cn(t) have been replaced by

The functions f_(x), which are linear combinations of the functions gn(X), are
known as Lagrangian interpolation functions. Since this is in the form of equa-

tions (3-17), with deflections at the N points u k acting as the generalized var-
iables, the resulting equations of motion, equations (3-19), can be written in
matrix form as

whe re

IF1 = [Pa A, 0, ...,0, PbAI

and, from equations (3-18b) and (3-18c),

Mnk = (LA 2)bnk [

Knk (LA 2 ) Cnk

The case considered in this study assumed a polynomial form for the functions

gk(x); that is

k-1
gk(x) = x (3-26)

Equations (3-21), (3-22), (3-25), and (3-26)provide the basis for the eval-
uation of line modeling via the two modal and one collocation methods considered.

3.5 Accuracy Criteria

As previously mentioned, the feedline model must accurately represent
the interrelationships between pressures and flows at the end of the feedlines.
The admittance form of the feedline equations can be written as

44



_} [
Qs COT

(3 -Z'7)

The function coT/tan _T can be viewed as defining the suction (tank) flow per unit
suction (tank) pressure, while the function COT/SincoT defines the suction (tank)
flow per unit tank (suction) pressure. Note that these two functions appear in

the propulsion frequency-response relationship given by equation (2-13);

c0fftan cow appears in the characteristic equation for the propulsion systemwhile

coT/sin 0_T iS important for the tank pressure influence.

While the exact admittance matrix is both reciprocal (the suction flow rate
per unit tank pressure equals the tank flow rate per unit suction pressure) and

symmetric (tank flow per unit tank pressure equals the suction flow per unit

suction pressure), the admittance matrices implied-by some approximate models

do not necessarily have both of these properties. Consider the generaltrans-
mission matrix:

['o' tTst17<t:o,
(Qt:) 2i _ZzJ (Qs)

(3-28)

Converting this to an admittance description yields

Y21
D

y211Pt

Ps

Y22

i

(_22

_12

-1

c_12

-_IA

all Ps

(3-29)

Except for the Rayleigh model, the transmission models developed in section 3.2

have la] x 1, which implies a lack of reciprocity (ref. 16); that is Y12 and Y21

are not equal, and hence both must be compared to coT/Sin C0T. However, a 11 =
a22 for all the transmission models, so that Yll = Y22, indicating that symme-
try is maintained. In the case of the open-closed modal system of section 3.4,
truncation of the modes produces an unsymmetric representation such that

Yll _ Y22" Thus, for this model, both Yil and Y22 must be evaluated relative
to _ow/tan cow.

In the past, when outflow effects were neglected at the tank/feedline inter-

face, the critical parameters were suction flow due to tank and suction pres-

sures, and satisfaction of neither the reciprocity nor symmetry relations was

required. Now, however, outflow effects have been found significant and care
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must be taken to insure that approximations introduced in the line modeling are

valid for all four of the possible admittance functions.

Permissible bounds on the exact functions cor/tan COTand COT/sin COTare

based on a 5-percent amplitude error and a 5-percent frequency shift at each
point along a function. The outermost of these two bounds provides the allow-
able error band. The results are shown in figures 8 and 9. The various models

are to be evaluated in terms of the frequency range over which the appropriate

Yij fall within these error bounds.

3.6 Evaluation of Finite-Element Models

As discussed in section 3.5, the various functions Yll(COT), -ylZ(COT) and

-yZl(COT) were used to evaluate the models developed in secfions 3.2 and 3.3.
In order to evaluate the admittance models, they were first cast into the trans-

mission formulation making no approximations. Then the transmission matrix
for a line divided into N segments was found by raising the transmission matrix

for each segment to the Nth power:

F L N)] N
OZll (COT/N) -_ _IZ(COT/

= 1 (3 -30)

Then the resulting [a] was used to compute the functions Yll(COT), -ylZ(COT),

-yZl(_T) for comparison with the error bounds on these functions. Note that the
Rayleigh transmission and all of the admittance models give identical results

for Y12 and Y2 ' whereas the other models do not behave in reciprocal fashion.
Values of N = _, 3, 5 and 10 were employed and computations were made for

values of ¢0T/N ranging from 0 to _. For N = 1, all models were evaluated; the
exact-at-specified-frequency transmission and admittance matrices were evalu-
ated for coot = n/4, _/3, _/2, and 3_/4. It was apparent that several of the
candidate models were not promising, and so for N = 3, and N = 5, several were
discarded. Finally, for N = 10, several more models were discarded. Figures

10 through 13 show Yll and Y12 versus coT for two of the models: the lumped
(Raylelgh) transmission and admittance-series exact at cooT = _/3.

The results of the computations are summarized in Table I, where the
maximum value of COT/Z_N (fractional part of a wave length per element) for
which the functions remain within the • 5-percent amplitude and frequency bands

are shown, as well as some selected results for Yiz using a 10-percent ampli-
tude band.

Several aspects of Table I should be noted. The admittance Maclaurin
series forced to be exact at COoT = _/3 appears to be the best of these models in

terms of the matching of both Yll and Y12, as well as uniformity of convergence.
Several other models, particularly the product-series transmission model,
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match Yll better, but are relatively poor for Y12 and Y21" Other models exhibit
poor convergence. For example, the product admittance model for N = 1 does

well withYl2, but poorly with Yll; the situation is reversed for N = 3. Increas-
ing the amplitude band to +_ 10-percent did not significantly alter the range of
accuracy except for two of the admittance models for N = 5.

3.7 Evaluation of Normal-Mode and Collocation Models

As in the case of the finite-element models, evaluation of the normal-
mode and collocation models is accomplished by determining the accuracy with
which the models match the four exact admittance functions of a uniform one-

dimensional feedline.. The required admittance functions y 1' Y12, Y21, Y2
are defined by equations (3-10) (note the correspondence between P+, Ps an_

Pa, 13_ in figures 5 and 7). For both the normal-mode and collocatRon models,
reciprocity holds (i.e., Y12 = Y21) so that only Yll, YZ2 and Y12 need be exa-
mined. These are determined from frequency-response functions obtained using
the equations of motion developed in section 3.4.

For the normal-mode models, an Nth-order model is defined to include

the set of the first Nnon-zero-frequency (i.e., flexible) modes. A zero-
frequency (i. e., rigid-body) mode representing translation of the entire fluid line
is added to produce a system with N + 1 degrees of freedom. (Number-of-
degrees-of-freedom is defined to be the minimum number of independent vari-
ables necessary to completely define an arbitrary motion of the system. ) This
corresponds to truncating the series in equations (3-21) and (3-22) at n = N. For
the open-open modes, n = 0 in equation (3-21) corresponds to the rigid-body
mode. The models were then evaluated for values of N ranging from 1 to 10.

For the collocation approach, the number N + 1 defines the number of col-
location points along the line, including end points, and is therefore also a sys-
tem with N + 1 degrees of freedom. The points were chosen at equal intervals.
In the collocation case considered, N also represented the highest order of the
polynomial interpolation functions. Only values of N = 1, 2, and 5 were investi-

gate d.

3.7.1 Model using open-open modes. - In addition to being reciprocal,
each open-open mode is also symmetric, so that Yll = Y22" It is therefore only
necessary to determine the accuracy of the two functions Y22 and Y21 when using
open-open modes. Figures 14 and 15 are plots of Y22 and Y21 for the case N = 5.
Since open-open modes are employed, the infinities of the function are con-
strained to occur at the correct frequency, Deviations of the open-closed modal
frequencies, which are given by the zeros at Y22 and which fall in between the
open-open frequencies, would be expected to produce a reasonably accurate
measure of the accuracy of the system in terms of frequency error (see fig. 14).
Therefore, open-closed modal frequencies were computed using N + 1 open-
open modes (including the rigid-body mode) and the resulting errors determined
for N = 1 to 10. The open-closed modes are found from the eigenproblem set

up from equations (3-21b) by setting Pa = Pb = 0 and using equation (3-21a), to
constrain the end of the line to have zero motion; i.e., let
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N

u(O, t) = y_ qn(t)

n=O

= 0

The results are shown graphically in figure 16, where the percent error in each

modal frequency is plotted vs N. For any Nthe error progressively increases

with increasing mode number. Note that the error in modal frequency tends to

fall within a relatively narrow band; that is, the frequency error is basically

dependent only on the number of modes used and is relatively independent of the

frequency range of interest, at least up to the last open-open mode used. Two

envelopes are shown in figure 16, the lower envelope shows the number of open-

open modes, N, required to limit the error in the first open-closed mode (i.e.,

_n T = _/2) to a specified accuracy. The upper envelope shows the number of
modes necessary to maintain a given degree of accuracy up to the Nth mode, the

highest mode calculated. The curves are applicable only at odd multiples of
_/2. Furthermore, if N is selected to yield suitable accuracy up to the nth

mode at _r = (Zn-1)_/2 (nnot necessarily equal to N), then the range of accuracy

can be extended upward an additional _/Z to _T = nw, the next highest open-open

mode.

Turn now to the function Y21, and note from figure 15 that the maximum

error is one of amplitude and occurs at or near the open-closed modal frequen:

cies. The function Y21 was therefore evaluated for a series of values of N at
each of the exact open-closed modal frequencies, and the amplitude error deter-
mined. The results are shown in figure 17. Given a specified degree of allow-

able amplitude error, this plot can be used to determine the required number

of open-open modes need. In this case, also, the curves are to be read at odd

multiples of w]Z and the frequency range of applicability _0, extended upward

by Tr/Z.

In summary, for open-open modes: (1) the error in YZZ is approximately

the error in the open-closed modal frequencies, (2) the error in Y21 is approxi-

mately the amplitude error at the exact open-closed modal frequencies. Figures

16 and 17 provide the means for determining the required number of modes to

remain within specified amplitude and frequency error bands. The curves are

valid only at odd multiples of _/2; the range of applicability, expressed by _0T,

may be extended upwards by w/2 once N has been determined.

3. 7.2 Model using open-closed modes. - Unlike the open-open modes, a

truncated set of open-closed modes leads to the unsymmetric behavior Yll # YZ2"

This point will be seen to be critical to a total assessment of the accuracy of

the open-closed mode representation. (Note that Y2Z represents flow at the

closed end due to a pressure at the closed end. ) For the case N = 5, the func-

tions YZZ and Y21 are shown in figures 18 and 19. One characteristic of these
results is that both functions are exact at the open-closed modal frequencies.

Both functions remain well within error bands up to the last open-closed mode

frequency, rapidly diverging beyond. A good description of the accuracy of

Y22 and Y21 is given by the frequency error of the infinities of the function (oc-

curring at open-open modes of the system). Equations (3-22b) were used for

n = I, 2,... N, and the open-open modes were computed by setting the pressures
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Pa, Pb equal to zero and solving the resulting eigenvalue problem. This was
done for all N from 1 to 10. It was determined that the Nth mode was quite
inaccurate, the error varying from about 15-percent at N = 1 to about 20-per-

cent at N = 10. This is not unexpected since this mode is above the last open-
closed mode used. For the remaining modes it was found that the values were

quite accurate within 1.5-percent of the exact values. On the basis of these
results it was concluded that, in general, the functions Y22, Yz1 are satisfac-

torily accurate up to the last open-closed mode used.

This highly favorable view of the open-closed modal model, unfortunately,

fails to hold when the function Yll is considered. (Recall that Yllrepresents
flow at the top of the line due to pressure at the top of the'line. ) Refer to

figures 20 and 21, where Yll is plotted for N = 5 and N = 1, 2,4, 8, respectively,
and note that the accuracy of Yll is approximately given by the error of the
frequency of zero crossings. (A similar result was obtained above for theopen-
open modes. ) Note further that the modal functions being employed here are
for an open condition at point a, and a closed condition at b (see fig. 7); the zero
crossings of the function Yll represent modes open at b, closed at a. A plot
of frequency error similar to that of figure 16 can be determined, and is shown
in figure 22. In this case the error does not steadily increase with higher mode
number; results are tabulated in Table II. Excluding the results shown for the

Nth mode, a relatively narrow error band again results, slightly higher than

that of Y22 in the open-open mode case. This again indicates the error is
roughly independent of the frequency range, with the range of accuracy extend-
ing up to the frequency of the next-to-highest open-closed mode used [i. e.,
_T = (ZN-3)rr/2].

3. 7.3 Comparison of modal models. - Results are summarized in figure
23, where the two modal approaches are compared on the basis of the number
of equations (number of flexible modes N, plus one) required to achieve the al-
lowable 5-percent amplitude and frequency error. Results from figures 16,
17, 20 and 21 were employed. The results indicate that a distinct advantage
exists for using open-closed modes in the "low" frequency range (cot < 2.5_)
only if the accuracy limitation is ignored for the function (The function

Yl_ is the flow at the top of the line due to a pressure at t_ellt'op. ) For larger
va.ues of coT, even this does not result in a large saving in required equations.

Neglect of the accuracy of Yll, however, is not in general acceptable in light
of the importance of tank dynamic outflow as discussed in sections 1.5 and Z. 4.

When Yll errors are also considered one finds that a lower bound exists on the
number of equations (and hence modes) required to attain the 5-percent accu-
racy; a minimum of five modes or six equations is required for either the open-
open or open-closed modal system. It therefore appears that modal represen-
tations are relatively inefficient for low frequencies (i.e., values of _0v < Z. 5_).

3. 7.4 Collocation model. - The last approach considered in section 3.4
was a collocation one, in which a set of interpolation functions was defined as

a polynomial function of distance x along the line; the physical coordinates u k
at a discrete set of points x k were retained. This provides some additional
flexibility not available in the modal approach in that physical variables are

retained. This leads toboth symmetric and reciprocal resultsts:t_h:tYl_Y2Z
andYzl=Yl2. Only a single case is presented (N = 5) as anind'c "o o
method's potential usefulness. The functions Yzz and Y21 are plotted in
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figures 24 and 25, respectively. Relative to the 5-percent error criterion, the

results are found to be within bounds up to a value _oT = 3.4w.

Figure 23 can be used to determine the range of accuracy _T for the modal

methods for N = 5. Comparison with the value ¢0r = 3.4_ indicates the colloca-

tion method is approximately equivalent to the modal methods.

3. 8 Minimizing the Number of Equations for Finite Elements

In this section we turn our attention to procedures for minimizing the

number of equations required for a finite-element modeling of a feedline. Effec-

tively this would reduce correspondingly the order of the matrix eigenvalue

problem required to perform closed-loop stability analyses. As will be ob-

served, the matrix size reduction is achieved at the expense of reduced sparsity

of the matrix. Computer programs for the general eigenvalue problem, how-

ever, tend not to attempt to take advantage of sparsity. The result is that both

the computing time and the storage requirements are lessened by the reduction

in matrix order.

Consider two segments of a line as shown in figure 26. First let us sup-

pose that the two segments are described by admittance matrices [ya] , and [Yb],
so that we have

I segment a I segmentb I

PI' Q1 P2' 62 P3' Q3

Figure 26. Two-segment line.

[ya
°z LYa21

lybyb2]IP2}
(_3 YbZl Yb22 P3
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If one equates the two equations for Q_ _iven by the second and third equations
the following three equations are obtained:

(_I = Yall P1 +yal2 P2

Ya21 PI +yaZ2 P2 = Ybll P2 +ybl2 P3 (3-31)

(h3 = Yb21 P2 + Ybz2 P3

Notice that there is no change in the order (that is, the highest power of s) of the
equations by this elimination. This procedure could be systematically followed
to eliminate all the internal flow variables within an N segment line. The result
is a reduction from 2N transmission equations involving the N + 1 pressures
and N + 1 flows, to N + 1 equations involving the N + 1 pressures and the two end
flows for a total of N + 3 variables.

In parallel fashion, it would be possible for an impedance formulation to
achieve the same reduction in the number of equatioDs and variables by elimi-
nating all the internal pressure variables.

The Rayleigh lumped-parameter model is a spe cial one in the transmis s ion

category because it can also be put into a second-order impedance form.
Na me ly,

iPll_¢o2 = _ 2

P2 T -I -,i [Oz)
2

(3-32)

or for a spring-mass analogous system

F2 -i 1 (M¢°)2. x2
2K

(3 -32a)

The elimination of the internal pressure variables produces the usual form of
the equations of motion for a lumped-parameter system. For the spring-mass
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system in figure 27 made up of two Rayleigh segments, the result of the elimi-
nation of the internal force F2 is the familiar form:

Mz
- _x I +K(x I -x2) = F I

2
- Me x 2 +K (2x2 - x I - x3) = 0 (3-33)

MJ
"--'z'--x3 + K(x3 - x2) = F3

First Element Second Element

M/2

K

M/2 M/2

-'_ _2 L _3

Figure 27. Two-segment Rayleigh mechanical model.

In addition to this type of reduction, the Rayleigh element can be reduced in

another way which is common to any transmission form as discussed next.

Suppose segment a in figure 26 is represented by a rearward transmission
matrix and segment b by a forward transmission matrix:

Q2 Q1

(3-34a)

(3-34b)
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Eliminating the conditions at point 2,

P1

we can then write

%1

(3-35)

Thus the four equations (3-34a, b)have been reduced to the pair of equations with

no increase to the order of the Laplace variable. Repetition of this procedure
for an N-segment line permits the elimination of every other pair of pressure-
flow conditions along a line and reduces the number of equations from 2N to N
(assuming that N is an even number) and the number of variables from N + 1 to
(N +.2)/2 pressures and flows. This is one less equation and one less variable

than for the admittance or impedance case, but this is an insignificant differ-
ence. In effect, all three of the basic matrix forms (transmission, admittance,
and impedance) permit a reduction in the number of equations and number of
variables by almost a factor of two for a many-segment line.

It has been noted previously that the mathematical transmission forms do
not precisely obey the theorem of reciprocity; that is, the determinant of the
matrix is not exactly one (ref. 16). A consequence is that some difference is
obtained by use of the rearward versus the forward form of the transmission
matrix. Moreover, the lack of reciprocity may be the cause of a lesser accu-
racy for equivalent mathematical approximations for the transmission relative
to the admittance form as seen in Table I. However, if the procedure indicated
by equation (3-35) is employed, where segments a and b are identical, reci-
procity is precisely satisfied. This is clear since if equation (3-35) is refor-
mulate d to

P1

61
= [aa]rl lab]f (3-36)

then the determinant of the matrix product must of necessity be precisely one.

3.9 Comparison of Finite-Element and Modal Approaches

For the Shuttle vehicle, as was pointed out earlier, it appears that both

efficiency and accuracy in feedline modeling will be quite important. Accuracy

alone is not a sufficient criterion for deciding upon which model should be used.

A direct measure of efficiency and accuracy is the number of equations required

to remain within a specified error bound. Using the results given in Table I for

finite-element models, combined with the equation minimization procedures in

section 3.8, one finds that the number of equations required to remain within

the _=5-percent amplitude and frequency limits can be readily obtained as a
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function of frequency (or coT). Figure 23 shows the number of equations re-

quired by open-open and open-closed modes.

Table III presents numbers of equations required versus COTfor two of the
better finite-element models &s well as for open-open and open-closed modes.

Since the Rayleigh model is often used in practice in an impedance formulation,
Table III also presents results for this formulation. Note that the Rayleigh
transmission and impedance forms are perfectly equivalent; that is, the number

of segments required is identical. It is, however, possible to eliminate an ad-
ditional equation from the transmission formulation for the particular values of
cot in Table III. In order to compute the number of segments required for the
finite-element models, based on Table I, a minimum value of COT/2wN was chosen

as 0. 125 for the Rayleigh lumped transmission model and 0.25 for the admit-
tance series forced to be exact at COT= w/3.

Figure 28 presents the number of equations for the best finite-element
model investigated, the w]3 admittance form, as well as the commonly used
Rayleigh impedance and the open-open and open-closed modes. From this fig-
ure, it can be seen that the series-exact-at _r/3 admittance formulation is sig-
nificantly superior to the Rayleigh formulation.

3. 10 Conclusions

.

.

1

.

The 5-percent frequency/amplitude error criterion yields intuitively
reasonable results. The frequency error is usually the controlling
error; an increase in the amplitude error to 10 percent often makes

no change in the frequency range of accuracy for a model.

The common practice of evaluating candidate models solely on the
basis of errors in modal frequencies is inadequate to satisfy the
requirements for pogo modeling. Examination of Table I reveals
that those finite-element models developed to minimize frequency
errors were not as successful in matching the desired functions as

were other models. Also, for the open-open modal model, the
wlthin-bounds frequency range is governed by amplitude error.

It is not possible to establish the relative accuracies of various
finite-element models based on one particular number of segments.
Table I shows that some models have erratic behavior from the

standpoint of rate of convergence; the product-series admittance
model is a notable example.

Among the transmission models studied, the Rayleigh lumped-
parameter model has a superior behavior for regularity in match-
ing the admittance functions over the largest frequency range. The

product-series is outstanding for Yll' but poor for Y12 or YZ1 (see
Table I).

Admittance representations (equivalently, impedance ones) tend to
be superior to transmission representations in matching Y12 andY21"
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The exact-at-_/3 is the best of the admittance representations

studied (see Table I).

Straightforward methods can be applied to minimize the number of

equations for admittance, impedance, and transmission formula-

tions. The consequence for admittance models is the elimination of

interior flow variables along a segmented line; for impedance mod-

els, interior pressures are eliminated; and for transmissionmodels,

pressure and flow at alternate interior positions are eliminated.

For a many-segment line, the result for any of the finite-element

models is almost a halving of the number of equations.

Of all the models investigated using the 5-percent error criterion,
the exact-at-_]3 admittance model provides the most efficient
means (i. e., minimum number of equations) for modeling lines when
_0r < 2.5_ (corresponding to the third open-closed mode). The
Rayleigh lumped-parameter model is superior to a modal model for

0Dr <_ 1. ZT_ (somewhat above the first open-_pen mode).

For open-open modes (N flexible plus one rigid body):

a. The error in Y22 (-Yll) is primarily a frequency error which
can be measured by determining open-closed modal frequen-
cies. Figure 16 shows that, at any N, the error falls within a

relatively narrow band up to and including the Nth open-open
modal frequency.

bo The error in YlZ (= Y21) is primarily an amplitude error which
can be measured by determining amplitudes at the open-closed
modal frequencies. This error, shown in figure 17, is a
strong function of both N and frequency range _oT.

C. If the 5-percent accuracy criterion is used, figure Z3 shows
that the addition of a mode extends the frequency range of

validity in O_T by _.

For open-closed modes (N flexible plus one rigid body):

a. The functions YZ2 and YZ1 (= Y12) are within acceptable accu-
racy bands (<Z percent error) up to the last open-closed
modal frequency.

b. The error associated with the function Yll dictates the accu-
racy of the open-closed modal representation; a lack of sym-
metry is the cause. The error associated with this functionis
a frequency error which can be measured by determining the
closed-open modal frequencies from the open-closed modes.
As shown in figure 22, the error at any N again falls within a
relatively narrow band up to and including the (N-1)st closed-
open modal frequency.
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10.

ll.

As illustrated in figure 23, no significant advantage exists for the
use of open-closed modes over open-open modes when account is
taken of the errors in Yll resulting from the lack of symmetry of
the open-closed modes. The function Yll represents the flow atthe
open end due to a pressure at the open end. The importance of tank
outflow in determining vehicle stability (discussed in section 2)
requires accurate determination of the flow when the open end for
the modes is assumed at the tank-bottom/line interfere.

The collocation method using polynomial interpolation functions pro-
duced results comparable to those of the normal-mode methods for
the particular case investigated (using six collocation points).

3. 11 Recommendations

l°

°

.

.

.

For general use in pogo analysis, an approximate representation of
a uniform section Of line should be evaluated in terms of the accu-

racy with which all four functions in its admittance (impedance)
matrix approximate the exact transmissionline functions.

A criterion involving both amplitude and frequency errors is re-

quired. The 5-percent tolerances used herein seem reasonable and
are recommended. (The 5-percent frequency tolerance is consis-
tent with the recommended practice in ref. 1 for achieving an accep-
table structural model. )

In formulating a model of a particular feedsystem, the following pro-
cedure is recommended for achieving a model using a minimum
number of equations: (a) the system should be divided into sections
established by natural "break points" such as branch points, area
changes, bends, local resistances, or corrective device locations;
(b) for each of the resultant two-terminal sections, the maximum
value of _T should be computed (where T is the travel time for the

particular section}; (c) those sections for which_T -< 2.5_ should be
represented by the exact-at-v/3 admittance model; (d) those elements
for which _-r > 2" 5= should be represented by modes (open-open
modes are recommended because of their inherent symmetry}.

The resulting model for the feedsystem should be evaluated for ac-
curacy by first determining the overall admittance matrix (involv-
ing all points where significant inputs may exist, such as line ter-
minations or bends ). Then the admittance elements of this matrix
should be compared with the corresponding elements in an "exact"
admittance matrix using amplitude and frequency error bounds.
This "exact" matrix can be based on use of transcendental functions

or on use of a model having considerably more refinement.

If factors other than minimizing the number of equations suggest the

use of some other modeling approach, the accuracy evaluation in
item (4} above should be employed.
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o Future efforts in feedline modeling should include (I) an evaluation

of the influence of distributed dissipation on the modeling, (2) con-

sideration of closed-closed modes, and (3) further exploration of
the collocation method.
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4. ENGINE ANALYSIS AND TESTING

4. 1 Objective

The ideal objective for the mathematical modeling of an engine for pogo
analysis is to develop a linearized model of its pertinent physical properties.
For Saturn vehicles, however, the practice has been to provide only a transfer-
function description of the engine as if it were a "black box. " Transfer functions

can be beneficial if, because of complexity of a physical model, their use mate-

rially aids the ease or cost of computations. However, the need for a physical
model still exists; since it provides a basis for: (a) studies of the effects of un-

certainty in any physical parameters, (b) correlation with test data for pres-
sures and flows throughout the engine, (c) visibility over the consequences of
thrust variation, off-nominal conditions, or malfunctions, and (d) maintaining
cognizance over the assumptions made in deriving transfer functions. It is the

very complexity of the Shuttle engine (brought about by such things as variable
thrust operation, multiple flow paths, the presence of two-phase hydrogen flow,
multiple pumps for each propellant, and the presence of a preburner) that makes
it essential that a physical model be available.

4. Z Analytical Estimation of Pump Dynamics

Pumps are quite important contributors to the dynamic behavior of engines.
The two most significant characteristics of pumps are the compliance( 1 ) due to
cavitation at the pump inlet and the pump dynamic gain(2). At present we have
no theoretical basis for coping with either of these characteristics. This situa-

tion is not likely to change for at least the next several years. A recently com-
pleted attempt to develop a theoretical analysis for cavitation compliance has
produced a completely negative outcome (ref. 19 under contract NAS 8-26266).
Other theoretical studies recently begun at the California Institute of Technology,
if continued in association with experimental studies, give hope of eventually
providing a theoretical basis for pump dynamics, most optimistically some
several years hence (ref. 20 and 21, under contract NAS 8-28046).

Another recent study of cavitation compliance has yielded an empirical

method of estimation for the cavitation compliance of pumps within the Rocket-
dyne family of designs (ref. 22, under contract NAS 8-27731). The basis of the

method was a correlation of the measured cavitation compliance for the H-l,
F-I, and J-2 fuel and oxidizer pumps with pump design and performance infor-
mation. A key factor in the success of the method is the substantial correlation

of the data achieved by normalizing the parameter expressing the pump suction
operating condition (i.e., cavitat[onnumber, suction specific speed, or NPSH)

(1)Compliance is a measure of the volume change of the collection of bubbles

per unit of pressure change of the liquid surrounding the bubbles under
dynamic conditions.

(?')Dynamic gain is the partial derivative of pressure rise across the pump with

respect to inlet pressnre under dynamic conditions.
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with respect to the value of that parameter at head breakdown as shown in

figure 29. Reference 22 provides the best available basis for estimating cavi-

tation compliance in advance of experimental determination of pump dynamics.
An initial prediction for the Shuttle pumps is presented in section 5.
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Figure 29. Correlation of compliance data for Rocketdyne pumps.

There is no body of experimental data for the dynamic gain of the Rocket-
dyne pumps, such as exists for the cavitation compliance. The Rocketdyne
pumps operate in a regime which is essentially free of cavitation head loss. In
other words the static gain, which defined to be the slope of the steady-state
head-rise characteristic, is essentially unity. Data on Titan pumps {fig. 6 of
ref. 1) would suggest that the dynamic gain of the Rocketdyne pumps should be
about unity if the static gain is unity. However, there have been sporadic indi-
cations from Saturn V and Thor testing that dynamic gains may be of the order
of two. In our opinion, about all that can be done in advance of experimental
determination of pump gain for the Shuttle pumps is to assume that the gain
values can lie between one and two.
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4.3 Past Test 1oractice

Past practices of pump or engine testing have produced some results of
rather poor quality. Most obviously, there has been considerable uncertainty
in the determination of pump havitation compliance. The basic approach to the
determination of cavitation compliance has been to locate a fundamental hydrau-
lic resonance of the test system by sinusoidalhydraulic excitation, and then to

infer the value of pump-inlet compliance assuming that all other parameters of
the" test system are known. For example, this approach has led to the following
degrees of uncertainty in compliance values (based on results in ref. 19):

l. For the F-1 lox pump, up to a factor of three due primarily to un-
certainty in the mechanical compliance of a pressure-volume com-
pensator device in the feedline.

o For the F-1 fuel pump, up to a factor of five between results from
a cold-flow pump test (referred to as a "bobtail test") using excita-
tion near the pump discharge and results from a single-engine test
using excitation near the pump inlet.

B For the J-2 lox pump, up to a factor of two due to the use of two
types of mathematical models of the pump (that is, a single - vs. a
double - compliance model).

As mentioned earlier, pump dynamic gain has received rather little atten-
tion in testing. What has perhaps not been recognized is the possibility that the
value of pump dynamic gain may have a significant influence on the location of a
resonant frequency and thus, on the inference of cavitation compliance. Our
own recent experience shows that this is so for the Thor fuel system. Figure 30
shows, for the short-tank configuration of the Thor, how a cavitation compli-
ance inferred from an observed resonant frequency depends on whether the
pump gain is assumed to be one or two. Thus, it may be necessary to first
infer pump dynamic gain from the test data in order to be able to then infer cav-

itation compliance. It is not clear to what extent this matter has been consider-
ed in the testing of Saturn pumps.

To gain additional insight into causes of past difficulties, consider the ap-
plication of past test practices to a two-pump configuration representative of
the Shuttle engine. Figure 31 is a schematic of the setup. The sinusoidal input

flow Qi- is produced by an exciter near the pump inlet, and pressure measure-
ments '_ ..... P_ , 1O2, l° 3 and 1O_ are recorded. The object is to determine
the following freq_nncy-response r_lationships vs. frequency" input impedance

to boost pump (1.l/Q1) , input impedance to main pump (1O3]Q_) , and pressure

ratio across the two _umps (1O4/1O1). These relationships wi]_l be employed to
determine parameters of an analyt_ical model of the system.

A major detriment to the accuracy of the results of this test is that meters

for measurement of dynamic flow are absent from the test. For example, Q1
will be determined from the difference Q:_ - Q0, where Q:_ is known frommea-
surement of motion of the mechanical pis't'_n relative to th_"feedline pipe assum-

ing no cavitation at the piston; Ql is based on "calibration" of the feedline in

83



(Z "NI) SOMVIqdl_O:::) NOI.I, VLIA'¢:::) Q:_tI_I:_._,INI

_o

N

2

U
z

O

Z

O
LO

g]

U)

o

u

,,=4
rig

O

w.a

O

(3

°,.a 4.3

,...q

o
0

0

_ 0
u.¢

0 _

84



_Z

0

o,,,_
4_

o

0

0

o

o

85



terms of P ..... P_n at a condition of no steady flow (line blocked immediately
downstrearr_iof the exciter). The splitting of the exciter flow Qin according to

the upstream and downstream impedances, E l and Z 1 respectively, is expressed

by

ZI

QI - Zl + Zl Qin (4-I)

Clearly, if Z_ << Z 1 nearly all the exciter dynamic flow will go upstream; that
is, Q_ -_Q:_. Therefore the substraction Qin - Q_ to obtain the desired Q1 will
tend to be _ghly inaccurate, since a difference of two, nearly equal, numbers

is involved. Figure 32 shows the results of an estimation of the impedance mag-

nitudes IZ I] and IZ_I vs. frequency for a typical setup. It is seen that this

type of inaccuracy in inlet flow to the boost pump will become increasingly im-

portant as the frequency falls below I0 Hz.

The other needed dynamic flow Q3, at low frequencies, is inferred from

the pressure difference from PZ to 1°2 and the assumption of an incompressible
line between the pumps on the basis that P3 is upstream of any cavitation of the

second pump. Again, because the flow impedance of that line will be small, a

difference of nearly equal quantities will be involved and the inferred flow will

tend to be inaccurate.

Another type of deficiency of this testing practice ts that insufficient data
is obtained for independent determination of the pump parameters. Neglecting
rotational speed fluctuation, a pump requires four frequency-response functions

for a complete description of its dynamics. These functions appear, for exam-
ple, in the two equations which interrelate the pressures and flows at the inlet
and discharge of the pump. A test conducted with one position of excitation and
under one set of boundary conditions can only yield two relations among the four
unknown functions. So the pump dynamics cannot be completely determined.

Summarizing, much of the poor quality of pump parameters stems from
two deficiencies. The first is a lack of dynamic flowmeters. The process of

inferring the flow lends to inaccuracy because of inherent numerical difficulties
and because the characteristics of other parts of the test system are employed.
The second fundamental deficiency stems from a lack of sufficient data to deter-

mine fully the pump characteristics. The flowmeter deficiency can be corrected
by development of suitable measurement devices, and such development has been
initiated by contract NAS 1-11756. The second deficiency can be rectified by
adopting a new test philosophy and this is discussed in the next section.

4.4 New Test Philosophy

A generalized representation of a turbopump is shown in figure 33. The
turbopump is imagined to be endowed with input-output state variables of inlet

86



Z
_'q m

t_

I
I

I
!

J

_CIFI_LINDVF_I _[OIqVCI_dIAII

o

I
I
I

-- 0

v

0
Z

0

M

o

Z

E
a--
!
o

,.o

N 0
z

0
_; 0

Z

Z Z _
!--4

D

°,,._

d

I1
4_

0

°,.._

87



!

(INLET} PI' Ol

I

(TURBINE) 8, O 3

01 _ P2' Q2

___ (DISCHARGE)

Figure 33. Generalized view of a turbopump.

pressure and flow, discharge pressure and flow, and turbine speed and flow.

full description of the dynamics is provided by a matrix relationship among
these variables. For example, the form of the relationship might be

A

{Pi}[t1213]/Qt= a21 _2Z _Z3 QZ

3 t _3z _33J LQ_J

(4-2)

where the Q_ are flows relative to the pump structure. Our goal should be to
determine these nine functions of frequency aii(_o) from test data and to then
correlate these functions with a physical modeq of the turbopump. For example,
for the usual simple model of the pump, we find that the cavitation compliance

C b and the dynamic gain (m + 1) are given by

C b
1 1

i_°al 1 ic°al 2

m + 1 = azl/all (4-3)

In general, what is required to determine the nine aij's is to measure the
six external state variables under three independent states of excitation. Recog-
nize that this requires the measurement of three flow variables. If the three

states are denoted by the subscripts a, b, c all the ali'S can be determined
from the equation

_2 1 _22 _23 2a Pzb P2 2a Qzb Zc

, Q,3 1 _3Z _33J "-Oa 65 Oc JLQ;a Q3b 3c-
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States a and b might be achieved by using inlet excitation for two different

boundary conditions at the pump discharge. One boundary condition might be
the normal one which is essentially resistive; the other might be an essentially

compliant one achieved by introducing a large accumulator immediately down-

stream of the pump. Another possibility would be the use of inlet excitation for

state a and discharge excitation for state b. The turbine characteristics would

logically be expected to be determined best by use of turbine flow excitation thus

achieving state c.

The importance of the turbine loop to system pogo stability should be
studied when a reasonably valid system mathematical model is available. The
turbine loop may be shown to be unimportant for the Shuttle vehicle, as it has

been for past vehicles. If so, the turbopump representation can be simplified
from a nine- to a four-parameter one (all ... azz) and the associated testing
considerably reduced.

An overall program for determination of turbopump dynamics would be
conducted in three phases. The first phase would consist of analytical studies of
alternative test procedures by means of simulation studies on an analog or digi-

tal computer. The simulation would include nonlinear behavior of the turbo-
pump and the presence of noise on the data.

Excitation techniques for collection of the greatest amount of useful data in
a limited test time is a most important area for study. One of the major limita-

tions for turbopump testing stems from the facility limitation on the duration of
a single test and the budget limitation on the number of tests. Possible sinusoi-
dal excitation techniques are (a) step changes in frequency, (b) a prescribed

sweep of frequency, and (c) a closed-loop control of the sweep of frequency (ref.
23). This latter approach provides for a relatively slower sweeprate during

passage through resonances to yield significant reduction in the time of the sweep
for a prescribed accuracy of the derived system frequency response. An intrigu-
ing possibility for substantially increasing the information obtained during a test
of limited duration is to apply several sinusoids simultaneously, using any of the
aforementioned techniques of frequency change. At any instant of time the re-

sponse to an individual sinusoid could be separated from the total response by
means of bandpass filtering. For example, the range from 0.5 to 62.5 Hz could
be covered by use of three simultaneously applied sinusoids: the first varies in
frequency from 0.5 to 2.5 Hz, the second from 2.5 to 12.5 Hz, and the third
from 12.5 to 62.5 Hz. The spread of the three frequencies at any instant of time
should be adequate for effective bandpass filtering; care would have to be exer-
cised that this were true in the case that closed-loop frequency control is em-

ployed since the ratio of the frequencies would then be time dependent.

The simulation studies would also encompass the following matters:

1. Independent states of excitation

t Data reduction techniques (PSD and cross PSD; Fourier components;

band-pass filtering)

o Exciter requirements (power and stroke for electrohydraulic or

electromagnetic machines, turbine supply oscillation)
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4. Methods for evaluation of linearity

5. Accuracy of aij based on expected data accuracy

On the basis of these simulation studies, test requirements and optimum pro-
cedures would be developed.

The second phase in the program would consist of dynamic tests of any
subscale pumps which are available after design development. Such pumps would
be electric-motor driven and would use water. As concluded in reference 2Z, it
is anticipated that the cavitation compliance would be applicable to the full-scale

pump. This conclusion is based on the remarkable correlation shown in figure
Z9 in view of the following differences among the pumps: (a) inducer diameters
from 0.15 m (6 in. ) for the H-1 fuel pump to 0.41 m (16 in. ) for the F-1 oxidi-
zer pump; (b) propellants from RP-1 to liquid hydrogen for the 3-2 fuel pump to
liquid oxygen; and (c) from single-stage centrifugal pumps to an axial pump for
the J-2 fuel. It is expected that the other pump parameters could also be ad-
justed for scale and propellant effects. Rotational speed oscillations could be
studied to provide partial information on the effect of the turbine loop. More-
over, these tests would also provide a proving ground for the test and data-
analysis procedures prior to full-scale testing.

The final phase, assuming subscale tests are conducted, would consist of
verification tests on full-scale pumps to selectively evaluate propellant, scale,
and perhaps turbine effects. If scale testing is not done on a pump, the full-
scale testing would have to be much more thorough. Such a three-phase pro-
gram provides considerable benefit relative to the past practice of solely testing
full-scale pumps. First, the simulation studies, in conjunction with the availa-
bility of flowmeters and the generalized view of the turbopump, should produce
improved test procedures. The result will be that the testing will be more effi-
cient, yield more reliable results, and provide a more comprehensive evaluation
of the dynamic properties of the pumps. Second, there will be a much improved
utilization of manpower and facilities by testing of subscale pumps well in ad-
vance of the availability of full-scale pumps. Considerably more time is avail-
able for subscale tests, and test-facility requirements are less severe and are
less likely to conflict with the needs for pump development. Finally, the possi-
bility of surprises and the resulting upheavel late in the development program
will be minimized. Visualizing that the three-phase program will involve less
full-scale testing than called for by past practices, and that this will compensate
for the much less expensive simulation studies and scale tests, all these bene-
fits should be possible at no increase in overall cost.

4.5 Conclusions

I. A linearized mathematical model of the physical elements of the

Shuttle liquid engine is needed for studies of pogo.

The best available basis for early estimates of the cavitation com-
pliance of the Shuttle pumps is the empirical method recommended
in reference 22. There is no proven basis for estimating the dyna-
mic gain of the pumps.
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3.

.

.

.

Practices used in the past for pump testing will be inadequate for

the Shuttle pumps. Major deficiencies of the past practices are the

absence of dynamic flowmeters and _he lack of independent deter-

ruination of the turbopump parameters.

Simulation studies on a computer to optimize dynamic test proce-

dures will more than pay for themselves by increasing the effective-

ness of later testing.

Dynamic testing of subscale model pumps flowing water is likely to

produce data which is applicable to the full-scale pumps flowing

propellant. The subscale testing will also provide a proving ground
for increasing the efficiency of test procedures to be used later for

full-scale testing. The subscale tests will permit an earlier availa-

bility of test-derived pump parameters for Shuttle stability studies.

Reduced requirements and improved efficiency for testing of full-

scale pumps should compensate for the subscale testing.

4.6 Recommendations.

.

Z.

o

.

.

A requirement should be established for a linearized mathematical

model of the physical elements of the Shuttle liquid engine. The

model should be continually refined through analysis and experiment

and made available to everyone conducting pogo studies.

The empirical method of reference ZZ should be employed to provide

an early estimate for the cavitation compliance of the pumps. Until

test data indicates otherwise, the dynamic gains for the pumps shollld

be assumed to lie anywhere between one and two.

A three-phase program for turbopump testing should be instituted

for Shuttle development: (a) computer simulation studies of testpro-

cedures, (b) comprehensive dynamic tests of available subscale

pumps based on independent determination of the turbopump fre-

quency-response functions, and (c) verification tests on full-scale

ruth, pumps.

Flowmeters for measuring dynamic flow should be developed for use

in the pump and engine dynamic tests.

Results of the Rocketdyne pump dynamic tests reported in reference
19 should be re-examined to investigate the role of pump gain.

91





5. VEHICLE STUDIES

5. i Introduction

Numerical studies of the vehicle were conducted using the method of ap-

proximate analysis identified in section Z. The studies which were conducted on

the early configurationwere directed towards the booster lox system, which

was believed to be potentially the most troublesome portion of the Shuttle pro-

pulsion systems for pogo. Even though the current vehicle configuration is quite

different, it is believed that the conclusions of this numerical study are meaning-

ful for the current orbiter lox system.

An objective of the studies was to identify and investigate the critical con-
ditions for stability. No previous vehicle has faced the situation where the first
organ-pipe frequency (one-quarter wave in feedline) has been equal to or below
the frequency of the fundamental longitudinal structural mode. While the stand-
ard approach of placing an accumulator at the engine inlet can readily reduce the

frequency of the first feedline mode to a point where it is no longer a danger to
stability, there will still be numerous coincidences of higher organ-pipe modes
with high-gain structural modes. It followed that damping of the higher feedline
modes may be quite important to stability. This suggested (1) an investigation
of the importance of the small distributed flow resistance of the feedline for the
damping in higher feedline modes, and (2) consideration of corrective devices
that serve to introduce increased damping in higher feedline modes. Both these
matters were dealt with in a study of alternative placements of an accumulator
to positions within the engine itself. The placement concept is to allow oscilla-
tory flow going into the accumulator to first pass through upstream engine resis-
tance and thereby dissipate energy.

A most valuable outcome of the accumulator-placement study was the find-
ing that the mathematical model being employed was somewhat inadequate. In an
analysis conducted after the accumulator-placement study reported here, it was
discovered that use of the model predicted instability in a situation for which the
system was essentially passive. This recognition led to the addition of tank-
outflow effects to the mathematical model, as discussed in section 1, and the
identification of important consequences for stability, as discussed in section 2.

The accumulator-placement study, conducted prior to the discovery of the
deficiency in the mathematical model, is reported in the next section. Even
though the accumulator sizes resulting from the study are incorrect, the results
may well be correct in a qualitatiye sense. Moreover, various intermediate

findings of the study are believed to be valid. We first show the values employed
for the system parameters and identify their origin. Included is the stability
criterion adopted for this study. Next we show the key results.

In section 5.3, we present the results of an estimated cavitation compli-
ance of the pumps based on the recommendations of reference ZZ.
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5. Z Lox Study for Early Configuration

5. Z. 1 Parameters. - Structural modes were obtained from two vehicle

contractors. Evaluation of that data to obtain conservative estimates for stabi-

lity analysis led to the results shown on figure 34. High-gain structural modes
can occur within the shaded bands of natural frequency versus percent of burn

time shown in figure 34a. Associated with each of the frequency bands is an

upper bound for the structural gain (fig. 34b) and for the tank-bottom pressure

per unit engine acceleration (fig. 34c). The structural gain is to be multiplied

by IZ to account for that number of engines.

Both modal analyses were based on the use of single-mode representations

of the hydroelastic tanks. Experience on Titan programs has shown that higher-

order tank modes significantly influence the dynamic characteristics of the

vehicle. The effect of these modes is not local and their influence has been

noted strongly in response analyses and in flight data from both payload and the

booster systems. As a result of this lack in modeling, structural modes above

region II in figure 34a are likely to be erroneous.

A simple physical model (see fig. 2) for the engine was constructed using
information available from contractor reports. The results are summarized in

Table IVa. Configurations and pressure drops for the tank-to-engine lox feed-
lines were obtained from the vehicle contractors. The parameters appear in

Table IVb. The positions of feedline modes relative to the structural modes are

shown in figure 34a.

An analysis of the feedlines as uniform continuous transmission lines

including frictional resistance [see eq. (2-3)] yields the following damping ratio

for open-closed modes:

= R_/2_L_ (5-i)

where ¢0 is the natural frequency of the mode and Rl and Ll are the total resis-
tance and [nertance of the line, respectively. Note that the damping is inversely

proportional to frequency. This is contrary to behavior which is often arbitrar-

ily assumed (constant modal damping or even increasing damping in higher

modes). Damp[rigs obtained using equation (5-1) are shown at the bottom of
Table IVb.

5. Z. Z Accumulat0r placement study. - The closed-loop damping of the

coupled structure/propulsion system was evaluated by use of equation (Z-l) in the
form:

_N = " (iZGe) (HeI +HtI )/2 _5-Z)

where lZGe is the structural__ gain for the twelve engines, and Hel and H_T__are the

individual contributions to H I due to engine acceleration and tank pressure, re-
spectively. For purposes of this study, a minimum value for _N was set at

0. 002. Experience with structural damping indicates that 0. 008is a reasonable
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lower bound. (This may not be correct for modes which are local in nature;

for example, the Saturn V, S-II engine/cross beam/lox tank modes. ) Placing

_N at i/4 of this value implies a "damping gain margin" (ref. I) of 12 dB.

The accumulator locations selected for the study were at the engine inlet,

at the discharge of the boost pump, and at the discharge of the first-stage of the

main pump. The engine-inlet location has been employed on all past vehicles.

The main-pump-discharge location was recommended for study by an engine

contractor as a means of reducing peaks in propulsion frequency response and

to permit use of available gox within a heat exchanger for the accumulator pres-

surant. The boost-discharge location was conceived as a possibly effective

means of increasing the damping in engine feedline modes by forcing oscillatory

flow entering the accumulator to pass through the resistance of the boost pump.

The boost pump resistance is considerable relative to the distributed resistance

in the engine feedline (see Table IVa). For example, an introduction into the

feedline of a resistance equal to that of the boost pump would produce a pressure

drop of about 1.6 MN/m 2 (230 psi) which is an order-of-magnitude higher than

the pressure drop in the feedllne itself (refer to Table IVb).

For a given volume of pressurant gas in the accumulator, the compliance

is inversely proportional to the steady pressure. For example, during the lat-

ter portion of the booster burn period we find that equal accumulator volumes

yield compliances in the ratio of 1:0.39:0.04 for the engine-inlet, boost-dis-

charge, and main-discharge locations, respectively. The question is whether

the lower compliances at the downstream locations for the accumulator can be

overcome by the effect of the associated higher upstream resistances.

An initial analysis was performed at burnout, assuming no cavitation of

the pumps and a gain of Z for each pump. Since the vehicle tank is empty, there

is no contribution to propulsion feedback from tank oscillatory pressure (that is,

_itl = 0). The imaginary part of the feedback due to engine acceleration Hel is

plotted v3s. fre3quency on figure 35 for four conditions: no accumulator, and
0. 057 m (2 ft ) accumulators at each of the three locations. From equation

(5-Z), _T <-0.00Z and the G_ from figure 34b were employed to obtain upper

bounds on Hle; these boundsVare shown on the figure for modes I, II, III over the

corresponding bands of frequency shown in figure 34a at burnout. An exceed-

ance of these bounds indicates that the stability goal for _N is not met. For

reference the frequency of various feedline modes is indidated by the arrows at

the upper right of figure 35.

Review the matters of interest on figure 35: (1) the no-accumulator case

is up to 32 dB beyond the bounds for modes I and II and 17 dB for mode III. Note
that the first peak occurs at 1/4 wavelength in the feedline and the higher modes

at 3/4 and 5/4 wavelengths, as expected. (2) The engine-inlet accumulator only
exceeds the mode II bound by about 1 dB. The strong second peak at about 6 Hz

(about 1/2 wavelength) and the third peak at about 12 Hz (about 1 wavelength)

are located as expected (for example, see fig. 10 of ref. 24). Relative to the

effectiveness of feedline resistance, an analysis at the 6-Hz peak showed that a

removal of feedline resistance would increase the peak value by 21 dB! (3)

The boost-discharge accumulator does not exceed any bound. The first reso-

nance at about 1 Hz has a somewhat lower peak value and higher frequency than

the first peak for the engine-inlet accumulator; the two higher peaks occur at

about the same frequencies as for the engine-inlet case, but at greatly reduced
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Table IV. Propulsion-system parameters for study of
ear ly confi guration.

ao

h.

Engine parameters for lox (nominal power level, mixture ratio of 6)

Boost pump resistance(i)

Boost pump pressure rise

Resistance of first stage

of main pump

Discharge-line resistance

Discharge -line inertance (2)

Co rebus tion - chamber
re s i stance

8.8 MN s/m 5

2.39 MN/m 2

44.6 MN s/m 5

60.8 MN s/m 5

0.08 MN sZ/m 5

36.8 MN s/m 5

(0.52 sec/in, z)

(345 psi)

(Z. 64 sec/in, z)

(3.64 sec/in. 2)

(0. 005 secZ/in. 2)

(2. 18 sec/in. 2)

Feedline parameters

Ele vation change

Effective area

Ine rtance

Quarter-wave frequency

Static pressure drop

Resistance

Damping ratios

Quarter wave

Three-quarter wave

40.6 m (1600 in.)
2

0. 0409 m (63.4 in. z )
2

1.4 MN s /m 5 (0.081 secZ/in. Z)

2.9 Hz

0. 176 MN/m 2 (25.5 psi)

0. 733 MN s/m 5 (0.0434 sec/in. 2)

O. 015
O. 005

(1)resistance in SI units is based on pressure divided by volume flow; in

engineering units, weight flow is employed.

(X)the flow difference in (i) also applies to inertance.
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peak values (about 18 dB lower at 6 Hz and 34 dB lower at 12 Hz). The strong

reductions in the higher peaks give promise of the potential effectiveness of the

boost-discharge accumulator. Again looking at the importance of feedline

resistance, the resistance was removed and only a 3-dB increase was observed

at 6 Hz, a much lower sensitivity than for the engine-inlet accumulator. (4)

The main-pump-discharge location exceeds the bound for mode II and touches

the bound for mode III. The very low accumulator compliance results in peaks

which are intermediate in frequency to those for no accumulator and those for

the other accumulators. They are also intermediate in peak values.

On the basis of these results the main-pump-discharge accumulator was

dropped from further consideration.

Worst-case stability situations were identified as coincidence of mode II
with the 1/2-wave feedline mode, and mode In with the full-wave mode, at 75-

percent burn time (see fig. 34a). Since the higher peaks in H I are quite narrow
band (see fig. 35), it was decided to plot transfer functions as amplitude-phase

plots to assure that the definition of the peaks was complete. Figure 36 shows
the result for the function He(i_0), the propulsion feedback due to engine accele-
ration, for the engine-inlet and boost-discharge accumulators. The rapid phase
shifting is clearly evident at the higher resonances. When the phase is between
0 and -180 degrees the feedback is stabilizing. This plot shows that it is largely

the increased phase lag in H e that produces a lower peak value of its imaginary
part for the boost-discharge accumulator.

Figure 37 shows the result for the function t-lto(i_0), the propulsion feed-
back due to a unit amplitude of tank pressure. By _iefinition the total tank-

pressure effect I-It is the product of the tank pressure per unit engine accelera-
tion, _'n/¢n(e), and Hto:

Ht(i ) _= Cn(e ) Hto(i ) (5-3)

Results for all four accumulator cases are shown. Note that this function has a

much different character than does He(i_0). The amplitude of H-_ tends to re-
main relatively high at the higher frequencies. In fact, notice t_at the value at

the second peak (at 5.9 Hz) for the engine-inlet accumulator is higher than the
second peak (at 8.5 Hz) for no accumulator. We see from figure 34 that for

mode II at 75-percent burn time,_n/¢n(e) is negative and so a negative imagi-
nary part for H, (destabilizing) requires that Hto be in the first or second quad-
rants (between-180 deg and -360 deg on fig. 37). The situation is the reverse
for mode III: positive_'n/¢_(e ) and H.A destabilizing in third and fourth quad-
rants (between 0 and-180 deg or beyd_ad -360 deg on fig. 37). For the 75-
percent burn time conditions, it was found that the tank-pressure contribution
dominated over the engine-acceleration contribution. Conditions of minimum

stability are located on figure 37 by the X marks for the mode II and III coinci-
dences and the boost-discharge accumulator is seen robe superior for both
conditions.

The functions He(k0) and I-Ito(i¢o) were computed for a sequence of engine-
inlet and boost-discharge accumulator volumes, and _N evaluated using equa-

• tions (5-3) and (5-2). Main-pump dynamic gains of 1 and 2 were employed;
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the boost pump gain was maintained at 2. The results are shown on figure 38.
A substantial size advantage for the boost-discharge location is seen. For a

main-pump gain of 1, the stability goal is met with an accumulator volume of
0.048 m 3 (1.7 ft 3) at the boost discharge and 0. 18 m 3 (6.3 ft3J at the engine

inlet; for a gain of 2, the corresponding volumes are 0. 081 m 3 (3.2 ft 3) and

0.68 m 3 (24 ft 3). Thus we see that pump gain is quite an important parameter.

5.3 Prediction of Cavitation Compliance

The empirical method recommended in reference 22 was employed to esti-

mate pump cavitation compliance vs. net positive suction head (NPSH). This was
done for the fuel and oxidizer boost pumps and the first stage of the main pumps,

for operation at a nominal power level and a mixture ratio of 6. The data em-

ployed were obtained from the engine contractor and the resulting values of

parameters used for the prediction are given in Table V. The predicted values
of a dimensionless compliance pgCb/A 1 vs. NPSH are given on figure 39, where

p is the propellant density, A 1 is the flow area at the pump inlet, and C b is the

compliance in terms of volume per unit pressure. Two curves are shown for

each pump, one derived using the stay-time basis and the other the curve-fit

basis of reference 22; these two bases gave an equally good correlation withtest-

derived compliance data for the Saturn pumps. The difference in the two curves

for each Shuttle pump on figure 39 is indicative of the uncertainty of the estima-

tion process. The regions plotted are an engineering estimate of overall un-

certainty, namely from half of the lower of the two estimates up to twice the

higher of the two.

5.4 Conclusions

I.

Z.

.

,

The studies of the early configuration showed that the method of

approximate analysis can be employed to obtain useful results.

An accumulator between the boost and main pump offers promise of

higher effectiveness than one at the engine inlet. An accumulator

downstream of the first stage of the main pump is relatively inef-

fe ctive.

The small distributed resistance of feedlines can make a large dif-

ference in the value at high-frequency peaks in propulsion frequency

response.

The necessary pump design information is available to apply the

method of empirical estimation of pump cavitation compliance of
reference 2Z.
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Figure 38. Structural damping required vs. accumulator volume
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Figure 39. Estimated cavitation compliance of Shuttle pumps.
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5.5 Recommendations

.

o

.

.

J

A structural damping ratio required for neutral stability of 0. 002

should be employed for initial studies of stability during Shuttle de-

ve io pine nt.

The modeling of the external oxygen-hydrogen tank for the Shuttle

vehicle must be sufficiently detailed to determine accurately the first

several modes of vibration of its longitudinal hydroelastic behavior.

Distributed feedline resistance should be included appropriately in

the mathematical model for pogo stability studies.

Accumulators at either the engine-inlet or between the boost and

main pumps should be studied early in Shuttle development.

Propulsion frequency response should be plotted in terms of ampli-

tude vs. phase to assure complete definition at higher feedline
resonances.

The method given in reference 22 is recommended for estimation of

pump cavitation compliance in advance of experimental data. The

estimates should be refined as improved information becomes avail-

able.
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APPENDIX A

STRUCTURAL-MODE EXCITATION FROM

TANK DYNAMIC OUTFLOW

A. 1 Formulation of Equations of Motion

Consider the structural/propulsion system shown in figure la, and assume

the system is to be separated into structural and propulsion-system elements as

shown in figures Ib, c. (Only a single [luid/tank system is considered. ) The

basic objective of this analysis is to define the necessary equations for coupling

the feedline system to the tank in such a way that the effects of flow across the

tank/feedline interface are properly taken into account. Of importance in

figure 1 is the tank plus the boundary conditions at its exit; the particular pr__o-

p_Ision system shown, together with the corresponding reactive forces FI, F Z

are incidental to the analysis and are carried along only as an aid to the dis-

cussion. Hamilton's Principle is used to define the system equations (ref. 3

or 4).

A. i. 1 Hamilton's Principle. - Considering the structural system of

figure Ib, noting that Pt A and-_, can be viewed as external forces independent

of the motions and acting through z the associated displacements xf(tb) and-_:.

The associated variational integral I, over the time interval tl, tZ is define_ as

t2

_=f I_? + PtAl xf(tb) + _-_i • --_i] dt (A-I)

t i
1

where _ is the Lagrangian for the structural system, defined as kinetic energy T

minus potential energy V. PtAi and-_ i are the tank-bottom pressure force and

propulsive system reaction forces, respectively; xf(tb) and-_ i are the corre-
sponding absolute displacements of the applied forces.

A form of Hamilton's Principle states that an admissible motion of the sys-

tem between specified states of motion at times t I and t2 is the "actual" motion

if and only if the variation of the integral I vanishes for arbitrary admissible

variations. That is

t2

_, f I6_+ptAl 6xf(tb,+_F" i • x-_i]dt

tI i

= 0 (A-z)

Typically, the Lagrangian .q'and the coordinates xf(tb),--_i will be expressed in

terms of a selected set of generalized coordinates. The equations of motion

result from expressing the integrand of equation (A-Z) in terms of variations of

these generalized coordinates.
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A. i.2 The structural-system Lagrangian. - The Lagrangian of a system

is defined by its potential and kinetic energy. The pdtential energy for the
structural system is contained entirely within the structure proper since sources

of fluid potential energy, such as surface waves and fluid compressibility, are

neglected. Let V s denote the stored structural energy. Then

v = v (A-3)
S

Contributions to the kinetic energy, however, arise from both the structure and

the fluid in the tanks. Let Tf denote the kinetic energy arising from fluid mo-
tions relative to the centroid of the vehicle, including the fluid in the tanks. Let

T s be the remaining kinetic energy, associated both with structural motion and
with motion of the fluid as if it were located at the centroid of the system. The
fluid motion relative to the vehicle center of gravity is defined in terms of a

scalar velocity potential function ¢ whose gradient defines the fluid velocity-_f at

a point in the fluid denoted by the position vector-_f

vf(rf, t) - -V_(_f,t) (A-4)

The function ¢ satisfies Laplace's equation

vZ¢ = o (A-5)

which is the fluid continuity equation for an incompressible fluid, together with
appropriate boundary conditions at fluid surfaces.

The motion of the fluid can be viewed as a superposifion of two mutually
exclusive types. The first type is fluid motion within a flexible tank structure,
requiring compatibility of fluid and structural motions at their interfaces; the
remaining fluid boundary conditions at the upper fluid surface and at the tank-
bottom fluid surface are the same as those used for the structural-system modal
analysis. Fluid motions of this type are characterized by the potential function
_1 and, by definition, are contained in the modal description of the structural
system. Fluid motion of the second type, characterized by the potential function
_0, is that within a rigid, motionless tank structure; fluid boundary conditions
at the upper surface and tank-bottom fluid surfaces are chosen so that the poten-

tial function _ = ¢0 + ¢1 satisfies the fluid boundary conditions of the actual sys-
vll - l!

tern. In effect _0 corrects for the fluid boundary conditions of the modal
analysis. Thus, over the structure/fluid interfaces

__ 8w N }

n • V_ 1 = 8"--_

(A-6a)

v%=0
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where-_ is a unit normal vector directed into the fluid and w N is the normal

component of the tank-wall deflection.

For simplicity surface waves and ullage-space dynamics are neglected,

resulting in a zero-pressure condition at the upper fluid surface. Since oscil-

latory motions only are considered, the free-surface condition becomes

_0 = _i = 0 (A-6b)

In terms of the potential functions _0, ¢1' the fluid kinetic energy can be
found by integration over the fluid volume V as

whe r e

i f dV = Wfl + If0 + fpV_l . _0 dVTf : _ Pl_'fl 2

V V

ifTfi = _- p(-V_i) • (-V_i)dV, i = 0, 1

V

(A-7)

The Divergence Theorem can be used to convert a volume integral into a surface

integral for a suitable vector v as follows:

• -_dV = - • vdS

V S

where-_ is the unit normal directed into the volume V, and S is the surface of V.

Applying the theorem to the cross-term integral of equation (A-7), and using
the boundary conditions of equations (A-6) and the fluid incompressibility require-

ment V2¢i = 0, yields

T f = Tfl + Tf0 -f p¢l-_. V¢ 0 dS

A_

where A_ = tank-bottom/feedllne interface area. Neglecting any variability of

parameters across A_, the above can be written simply as

Tf = Tfl + Tf0 + p¢l(tb) A_f0(tb) (A-8)
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where xf0(tb) is fluid velocity at the tank bottom corresponding to _0, and ¢l(tb)

is the velocity potential function _I evaluated at the tank bottom.

The Lagrangian function is now formed, using equations (A-3) and (A-8) as

= Ts + Tfl + Tf0 + p¢l(tb) A_xf0(tb) - Vs (A-9)

Noting that the Lagrangian corresponding to the structural-mode analysis, _m,

includes the potential energy Vs, and the kinetic energy terms T s and Tfl (aris-
ing from structural motions and from fluid motions corresponding to the potential

_I, respectively), _q' can also be written more simply as

_q' = _q_m + Tfo + p ¢1 (tb)A_ Xfo (tb) (A. 10 )

whereC_ m = (T s + Tfl - V s) is the Lagrangian of the modal analysis.

Substitution of equation (A-10) into equation (A-Z) then yields the variation-

al equation

tz{
61 =ftt 6_rn 4 6(Tf0 + p¢t(tb)A_£f0)

+ PtA.Sxf(tb)_ - - + F.- 6x. dt = 01 1
i (A-II)

A. 1.3 Generalized coordinates. - By introducing the generalized coordi-

nates from the structural analysis, coCPm and _l(tb) can be written as

i
_n% :__Mn(_tn 2 2 2"- _0nqn)

n

_t n (tb)

_l(tb) =_-_ p qn (t)
n

(A-I2)

where Mn, con are modal masses and frequencies, respectively, and_Pln(tb) is

the modal pressure at the tank-bottom/feedline interface per unit modal accele-

ration. The equation forC_ m is standard; the relationship between modal pres-

sure and potential function #1 is obtained from Bernoulli's equation, assuming
small motions. Bernoulli's equation determines pressure at any point in the

fluid as

110



-"- _1
_l(rf, t) = p--_-- (rf, t) (A-13)

_1 and_'l can be expanded in terms of the modal coordinates as

n

n

(A-14)

Substituting equations (A-14) into equation (A-13), equating like coefficients, and

evaluating at the tank bottom yields the indicated expansion of ¢1 (tb) in equations
(A-12).

Generalized coordinates can also be introduced for motions described by

the potential function ¢_0" Physically, this represents the case of fluid motion in
a rigid tank arising from oscillatory pressure or flow perturbations at the tank

bottom. Since the fluid is incompressible, only a single coordinate is required.

Define the variable xf0(t) such that

¢_o(_'f't) = _0 (r_f)xf0 (t) (A- 15)

where _T¢)o(tb) = - 1. Then xf0 represents fluid velocity into the tank. Define an

effective inertance of the fluid in the tank L t as the ratio of pressure to the time
derivative of the volumetric flow rate,

_'0(tb) = LtQ0(t) (A-16)

where Qn = A1xf0(t). Then application of Bernoulli's equation for the potential
¢0 [similar to equation (A-14) for _1] and comparison with equation (12) yields

®0(tb)= X xf0 (A-17)

For a given tank configuration, I T can be determined approximately by assuming
one-dimensional flow in the tank as

h

fLt -- At( 
0
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where h is the height of fluid above the tank bottom and At(E) denotes variation

of tank area as a function of distance _ above the tank bottom. Alternatively, a

three-dimensional analysis may be performed, the potential function _0 defined

exactly, and Lt defined from considerations of pressure and flow conditions at
the tank bottom as indicated above.

The kinetic energy function Tf0 can also be expressed in terms of the
"generalized" coordinate xf0. Appl-ying the Divergence Theorem to the defini-
tion of Tf0 [equation (A-7)], noting the boundary conditions of equations (A-6)
and the result of equation (A-17), leads to an expression for Tf0 as

1 Lt (A_Xfo)2 (A-IS)Tfo =

Substitution of equations (A-12), (A-17), and (A-18) into equation (A-11) produces

the variational equation in terms of generalized modal coordinates as

i I [½ n_ (qn2 2 2)1
t2 " _0nq n51 5 M n -

l 2.2 ' " 0]+ 6 LtA_xfo + y_ _in(tb)qnA_Xf
n

i n

dt= 0

(A-19)

Note that aside from definition of the absolute fluid displacement at the tank bot-

tom[that is, xf(tb) in terms of xf0, q_n], the above equation is independent of the
specific boundary conditions as sumedat the tank-bottom/feedline fluid interface.
The final equations of motion are derived below for modal analyses assuming
several particular choices of this boundary condition.

A. 2 Case 1: Zero Absolute Flow

The simplest case results when one assumes that the absolute motion of
the fluid is zero at the tank-bottom opening. The tank-bottom structure is un-
constrained, so that outflow from the tank is permissible in the structural sys-
tem modes. This is equivalent to having a piston in the tank-bottom opening,
fixed in inertial space. Then, at the tank bottom,

Xfl (tb) = 0
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By definition of _, _0, _I' the absolute velocity of the fluid at the tank bottom

xf(tb) is given by

xf (tb) = xf 1 (tb) + _f0 (tb)

Accounting for the tank-bottom boundary condition, the absolute motion of the

fluid at the tank-bottom/feedline interface is defined solely by ¢0 and we can

write

xf (tb) = xf0 (tb) (A-2 0 )

Substituting equation (A-Z0) into equation (A-19), performing the indicated varia-

tions and .integrating by parts those terms containing variations of velocities

6qn and 6xf0, noting that the operations of variation and time differentiation are

commutative and that 5qn, 6xf0 are zero when evaluated at t 1 and tz, yields

2 )OOln(tb)Af _ f0 + E_i'-_inl6 qn+ ¢0nq n -
i

[ J /+ -LtA_xf0 -E_ln(tb)q n + P Af 6xf0 dt
n

Setting 61 = 0 for arbitrary variations, so that the required equations of motion
are

2 _In(tb) (_ +E Fi" @inqn + Wnqn - M M
n n

i

Pt = -LtQ +E_in(tb)_ln

n

(A-Zl)

The absolute volumetric flow at the tank-bottom/feedline interface, Q = -Alx, n,

has been introduced (positive direction downward in fig. 1) for compatibility "_

with the usual formulation of the propulsion-system equations.
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A. 3 Case Z: Zero Relative Flow (Closed-Bottom Tank)

In the usual approach to computing structural modes, the tank bottom is

assumed to be closed, that is, the fluid and structure at the tank bottom have the

same motion. Equivalently, a piston in the tank-bottom opening is fixed to the

tank-bottom structure. Therefore,

Xfl(tb) = x(tb)

where x(tb) is the tank-bottom structural motion. For this case the potential

function _0 represents flow across the tank bottom. Accordingly, absolute fluid

velocity is given by

xf(tb) = Xfo + x(tb)

or, we can write

xf(tb)- xf0(tb)+ x(tb) (A-ZZ)

Noting that the tank-bottom displacement can be written in terms of the structural
modal coordinates as

x(tb) = _¢n(tb)qn

n

Substitution of equation (A-22) into the variational equation (A-19) yields

61 =f. t2 6 1V[n(qZrl - _nq n + 6 LtA_xfo +_ln(tb)qnA_Xf

n

+ PtA_ 6IXfo(tb)+_-_#n(tb)qn 1 +_i" 6(_--_inqn)} dt = 0
n i n

Performing the indicated variations, integrating variations of velocity terms by

parts, and requiring the variational equation 6I = 0 to be satisfied for arbitrary
variations produces the following equations of motion:
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- Z
+ COnan_ =qn

_i n (tb) PtAf
M QR + _ 9n (tb) +E --

n n i

v t =-Lt6R  ln(tb) .
n

M
n

(A-Z3)

where QR = - Alxf0 is the outflow from the tank. By continuity the absolute
volumetric flow Q (positive downward) is given by

Q = QR - Atx(tb)

or, introducing modal coordinates,

n

(A-24)

Eliminating the relative flow term QR from equation (A-23) by use of equation
(A-24) produces the following equations in terms of absolute volumetric flow Q:

- 2 ;_'in(tb) (_k k) PtAI )
qn + O_nqn M A, Ck(tb)q " ;_In(tb) Q+" MCn(tb +E_i'_ir

n Mn n i

Pt = "Lt6 +E['5_tk (tb) - Ai LtCk(tb)]q k
k (A-25)

Unfortunately, the modal coordinates for this system are coupled. The coupling
coefficients, however, can be shown to be a function of the ratio of feedline area

divided by tank area and are therefore small (see sec. 1.5).

A. 4 Case 3: Free Flow

The final case to be considered is that of free or unrestrained flow at the

tank bottom. For this case a zero-pressure condition exists at the tank-bottom
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opening in the modal analysis, implying

¢l(tb) = 0

The variational equation becomes

"ij l
+.,.0EV,. ,nl+" dt

(A-26)

and yields the structural-system equation

2 PtA_ -_ -_
qn + ¢°nqn - M @fn (tb) + _ Fi" Ibin

n i

(A-Z7a)

Absolute fluid volumetric flow at the line/tank interface is defined by

n

(A-Z7b)

A. 5 A Reciprocity Relationship

An interesting reciprocity relationship evolves from the symmetry of the

cross-term integral containing ¢1, ¢0 in equation (A-7). An interchange of the
roles of ¢1 and _0 in the application df the Divergence Theorem produces the
equality:

f p@l-_. V¢ 0 dS = f p@0-_. V@ 1

A 1 S'

dS
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where S' is the surface area not in contact with the ullage. This can also be
written as

f P lXfo dS : f IWNI as

s'

(A-28)

Disregarding time derivatives, equation (A-28) can be interpreted as stating a

reciprocity relationship between pressures and motions in the flexible- and

rigid-tank systems (corresponding to the fluid potentials _I and 60, respective-

ly). From Bernoulli's equation [see equation (lA.-13)] the terms 961 can be seen
to represent fluid pressures. The left side of equation (A-13) can therefore be

viewed as expressing the work done over the tank-bottom area A I , by the pres-

sure at the tank-bottom in the flexible-tank system acting through the tank-

bottom fluid displacement xf0 in the rigid-tank system. Considering Case I,

where #I is zero over the tank bottom, S' becomes the wetted area of the tank.

The right side of equation (A-28) can be interpreted as the converse of the left

side, namely the work done, over the tank wetted surface, by the tank-wall

pressures in the rigid-tank system acting through the normal dispacements of

the tank wall in the flexible-tank system. For Case 2, the right side also con-

tains terms from integration over the tank-bottom area A I.

A. 6 Summary

The equations of motion for the structural-system modal coordinates have

been modified to account for the effects of tank dynamic outflow. The equations

are presented for three cases, based on different boundary conditions for the

fluid at the tank-bottom/feedline interface in the structural-system modal analy-

sis. For ease in coupling with the propulsive-system equations, the system

equations are defined in terms of the pressure Pt and absolute volumetric flow

Q at the tank-bottom/feedline interface, propulsion-system reactive forces Fi,

and structural-system modal coordinates qn"

The fluid boundary conditions considered were (1) zero absolute flow, with

the resulting equations of motion given by equations (A-Z0); (2) zero relative

flow (closed-bottom tank), with the equations of motion being given by equations

(A-25); and (3) free flow (free surface), with the equations of motion being given
by equations (A-Z7).
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APPENDIX B

MINIMUM-FREQUENCY ERROR MODELS

Our goal is to derive models which minimi'ze the error in modal frequen-
cies. Consider a transmission matrix [a] representing one of N segments of a
uniform line. The transmission matrix for the entire line is then [_] = [a]N.

Following the work of reference 15, when all = a22

all = a22 = _N cos N0 (B-la)

~ _-_N /:alZ
a12 V _ sin N@ (B-lb)

-_ = _N -aZl sin N@ (B-lc)
a21 al---_

whe re

and

@ = sin 1 a12a21 (B-ld)

For a spring-mass system of N segments with the input end fixed and the
output end free, corresponding to open-closed boundary conditions for a fluid,
we have

or

a22_ N = 0
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which is only true for the non-trivial case if

_zz = o (B-Z)

Using equation (B-la), the open-closed characteristic equation is then

_-V - 1

cos NO = 0 or NO = ---2---- _ (B-3)

where v = 1, 2, ..., co. Similarly, the zeros of a'12 andS21 are the eigenvalues
for the free-free and fixed-fixed boundary conditions. For either case

sin NO = 0 or NO = wr (B-4}

where v = 1, 2, ... co.

Consider a transmission matrix with an undetermined coefficient "a" as
follows :

i - (coT')Z

2

I )z(coT'

(B-5)

where T' = T/N is the travel time for one segment. From equation (B-ld),

_2 = 1 + (1/4 - a)(_T') 4

Letting

u = sine = (_T') v/1 - ,a(,_y',) 2

1 + (1/4 - a)(o_T')4

we obtain

u = (_T') 1 -_- - -a + (_T' ÷

He we ve r

3 3u 5e = u +u /6 + /40 +...
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and hence

e = (oar,) 1 + 6 2 +... (B-6)

Retaining only lower order terms, this series can be reverted to yield,

_ a +...] (B-7)

Combining equation (B-7) with (B-5) for a fixed-fixed or free-free condi-
tion yields

_ _r + ... (B-8)N_v' = wT = (v,r) 1 - 1 a vz

The exact solution is, of course, from

sin(oaT) = 0 or 0av = v_ (B-9)

To eliminate the 1/N Z term in equation (B-8), we employ the value a = 1/3. Thus

the transmission matrix

(B-10)

[_]:[I(¢oT)2 1-(¢°T)22

will have an error proportional to 1/N 4.

Similarly, starting from the more general transmission matrix

[a] =

it is possible to show that the pairs of roots of the following two equations

Z70 a 2 - 480 a + 167 = 0

b = 4a- 5/3

121



will result in a frequency error proportional to 1/N 6.

a = 0.4746, b = 0.2517...

The pairs of roots are

and

a = 1.303, b = 3. 545...

The first pair of roots corresponds to coefficients similar to previous models
and yields reasonable results, while the second pair yields results quite
removed from others. Thus the transmission matrix

[_] =[i - _0"14746(¢°v)2(c0.r)2

is used as having a frequency error proportional to 1/N 6.

(B-12)
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